1
artículo
Publicado 2011
Enlace

In the frame of a Swiss-Peruvian climate change adaptation initiative (PACC), operational and historical data series of more than 100 stations of the Peruvian Meteorological and Hydrological Service (SENAMHI) are now accessible in a dedicated data portal. The data portal allows for example the comparison of data series or the interpolation of spatial fields as well as download of data in various data formats. It is thus a valuable tool supporting the process of data homogenisation and generation of a regional baseline climatology for a sound development of adequate climate change adaptation measures. The procedure to homogenize air-temperature and precipitation data series near Cusco city is outlined and followed by an exemplary trend analysis. Local air temperature trends are found to be in line with global mean trends.
2
artículo
Publicado 2012
Enlace

Recent scientific assessment studies of climate change impacts, including those from the Intergovernmental Panel on Climate Change, provide evidence of the negative effects of climate variability and change on natural and human systems. For instance, recent climate trends have caused loss in wheat and maize production, negatively affected coral reefs, and changed characteristics of some hazards in high-mountain regions. Assessment studies furthermore suggest that related risks to ecosystems, commerce, and daily life may increase over the coming decades as temperatures warm. Adaptation to climate change is required to reduce the effects of unavoidable changes, especially for the most vulnerable regions and populations. © 2012. American Geophysical Union.
3
artículo
Publicado 2013
Enlace

Original abstract: The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer) tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes), which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca) and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier ...
4
artículo
Publicado 2015
Enlace

Projected future trends in water availability are associated with large uncertainties in many regions of the globe. In mountain areas with complex topography, climate models have often limited capabilities to adequately simulate the precipitation variability on small spatial scales. Also, their validation is hampered by typically very low station density. In the Central Andes of South America, a semi-arid high-mountain region with strong seasonality, zonal wind in the upper troposphere is a good proxy for interannual precipitation variability. Here, we combine instrumental measurements, reanalysis and paleoclimate data, and a 57-member ensemble of CMIP5 model simulations to assess changes in Central Andes precipitation over the period AD 1000-2100. This new database allows us to put future projections of precipitation into a previously missing multi-centennial and pre-industrial context....
5
artículo
Publicado 2009
Enlace

The Andes as mountain regions worldwide, provide fundamental resources, not only for the local population. Due to the topographic characteristics, the potential for natural hazards is higher than elsewhere. In these areas, assessments of climate change impacts and the development of adequate adaptation strategies therefore become particular important. The data basis, however, is often scarce. Moreover, perceptions of changes and needs are often divergent between national and local levels, which make the implementation of adaptation measures a challenge. Taking the Peruvian Andes as an example, this paper aims at initiating a discussion about scientific baseline and integrative concepts needed to deal with the adverse effects of climate change in mountain regions.
6
artículo
Publicado 2017
Enlace

Along with air temperatures, the freezing level height (FLH) has risen over the last decades. The mass balance of tropical glaciers in Peru is highly sensitive to a rise in the FLH, mainly due to a decrease in accumulation and increase of energy for ablation caused by reduced albedo. Knowledge of future changes in the FLH is thus crucial to estimating changes in glacier extents. Since in situ data are scarce at altitudes where glaciers exist (above ~4800 m above sea level (asl)), reliable FLH estimates must be derived from multiple data types. Here we assessed the FLHs and their spatiotemporal variability, as well as the related snow/rain transition in the two largest glacier-covered regions in Peru by combining data from two climate reanalysis products, Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar Bright Band data, Micro Rain Radar data, and meteorological ground stati...
7
artículo
Publicado 2009
Enlace

The Andes as mountain regions worldwide, provide fundamental resources, not only for the local population. Due to the topographic characteristics, the potential for natural hazards is higher than elsewhere. In these areas, assessments of climate change impacts and the development of adequate adaptation strategies therefore become particular important. The data basis, however, is often scarce. Moreover, perceptions of changes and needs are often divergent between national and local levels, which make the implementation of adaptation measures a challenge. Taking the Peruvian Andes as an example, this paper aims at initiating a discussion about scientific baseline and integrative concepts needed to deal with the adverse effects of climate change in mountain regions.
8
artículo
Publicado 2020
Enlace

In the southern Peruvian Andes, communities are highly dependent on climatic conditions due to the mainly rain-fed agriculture and the importance of glaciers and snow melt as a freshwater resource. Longer-term trends and year-to-year variability of precipitation or temperature severely affect living conditions. This study evaluates seasonal precipitation and temperature climatologies and trends in the period 1965/66–2017/18 for the southern Peruvian Andes using quality-controlled and homogenized station data and new observational gridded data. In this region, precipitation exhibits a strong annual cycle with very dry winter months and most of the precipitation falling from spring to autumn. Spatially, a northeast–southwest gradient in austral spring is observed, related to an earlier start of the rainy season in the northeastern part of the study area. Seasonal variations of maximum ...
9
artículo
Publicado 2017
Enlace

In situ climatological observations are essential for studies related to climate trends and extreme events. However, in many regions of the globe, observational records are affected by a large number of data quality issues. Assessing and controlling the quality of such datasets is an important, often overlooked aspect of climate research. Besides analysing the measurement data, metadata are important for a comprehensive data quality assessment. However, metadata are often missing, but may partly be reconstructed by suitable actions such as station inspections. This study identifies and attributes the most important common data quality issues in Bolivian and Peruvian temperature and precipitation datasets. The same or similar errors are found in many other predominantly manned station networks worldwide. A large fraction of these issues can be traced back to measurement errors by the obse...
10
artículo
Filiación institucional de autor: Alejo Cochachín Rapre /Autoridad Nacional del Agua - Unidad de Glaciología y Recursos Hídricos (ANA-UGRH), Huaraz, Peru
11
artículo
Publicado 2016
Enlace

Water from glaciers is crucial for the Peruvian hydropower production. Hence, we investigate the glacier-atmosphere and climate interactions in the Cordillera Vilcanota, considering scenarios of significant precipitation reductions until 2100. The glacier mass balance model ITGG-2.0 is used for analysing the energy balance components regarding the projections. The results indicate that a precipitation decrease not only affects the accumulation rate of glaciers but also influences the ablation energy availability. Therefore, glacier retreat in the Central Andes is expected to accelerate, making water availability unsustainable and likely leading to future shortages for the hydropower sector and for other water consuming systems.
12
artículo
Publicado 2020
Enlace

En este estudio presentamos el enfoque y los principales resultados del proyecto Climandes.