1
artículo
Publicado 2017
Enlace
Enlace
Along with air temperatures, the freezing level height (FLH) has risen over the last decades. The mass balance of tropical glaciers in Peru is highly sensitive to a rise in the FLH, mainly due to a decrease in accumulation and increase of energy for ablation caused by reduced albedo. Knowledge of future changes in the FLH is thus crucial to estimating changes in glacier extents. Since in situ data are scarce at altitudes where glaciers exist (above ~4800 m above sea level (asl)), reliable FLH estimates must be derived from multiple data types. Here we assessed the FLHs and their spatiotemporal variability, as well as the related snow/rain transition in the two largest glacier-covered regions in Peru by combining data from two climate reanalysis products, Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar Bright Band data, Micro Rain Radar data, and meteorological ground stati...
2
objeto de conferencia
Publicado 2017
Enlace
Enlace
In many regions of Peru, the competition for limited hydrological resources already represents a large risk for conflicts. In this context, and within the circumstances of climate change, there is a great interest in estimating the future loss of Peruvian glaciers. Solid precipitation on glaciers, which affects the shortwave radiation budget via its effects on albedo, in general reduces ablation. For that reason, the height of the upper level of the transition zone between liquid and solid precipitation (snowfall level height) is considered to play a critical role. This snowfall level height is linked to air temperature. The observed and projected warming of the atmosphere is therefore affecting the glaciers amongst others by changing the snowfall level height. Despite the potential significance of these changes for Peruvian glaciers, the relations between snowfall level heights, glacier...
3
ponencia
Publicado 2015
Enlace
Enlace
Field and modelling based research indicates that for tropical glaciers, variations in snow cover and the altitude of the snow line via albedo effects are among the most crucial factors to explain the differences in annual glacier mass balance variability. It is therefore essential to identify the height of the phase change during precipitation events and its coupling with glacier mass balance. This knowledge is also fundamental to assess possible future impacts of e.g. changing air temperatures on glacier mass balances at low latitudes. However, the knowledge on heights of phase changes and air temperature during precipitation events is severely limited by the small number of meteorological measurements at high altitudes in the tropics and the Himalaya. Additionally, their one-dimensional type of observation that cannot appropriately account for the variations along the vertical dimensi...
4
ponencia
Publicado 2015
Enlace
Enlace
The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glac...
5
ponencia
Publicado 2016
Enlace
Enlace
In Peru, about 50% of the energy is produced from hydropower plants. An important amount of this energy is produced with water from glaciated catchments. In these catchments river streamflow is furthermore needed for other socio-economic activities such as agriculture. However, the amount and seasonality of water from glacial melt is expected to undergo strong changes. As glaciers are projected to further decline with continued warming, runoff will become more and more sensitive to possible changes in precipitation patterns. Moreover, as stated by a recent study (Neukom et al., 2015), wet season precipitation sums in the Central Andes could decrease up to 19-33 % by the end of the 21st century compared to present-day conditions. Here, we investigate future runoff availability for selected glacierized catchments in the Peruvian Andes. In a first step, we apply a simplified energy balance ...
6
artículo
Publicado 2016
Enlace
Enlace
Water from glaciers is crucial for the Peruvian hydropower production. Hence, we investigate the glacier-atmosphere and climate interactions in the Cordillera Vilcanota, considering scenarios of significant precipitation reductions until 2100. The glacier mass balance model ITGG-2.0 is used for analysing the energy balance components regarding the projections. The results indicate that a precipitation decrease not only affects the accumulation rate of glaciers but also influences the ablation energy availability. Therefore, glacier retreat in the Central Andes is expected to accelerate, making water availability unsustainable and likely leading to future shortages for the hydropower sector and for other water consuming systems.
7
artículo
Publicado 2015
Enlace
Enlace
Filiación institucional de autor: Alejo Cochachín Rapre /Autoridad Nacional del Agua - Unidad de Glaciología y Recursos Hídricos (ANA-UGRH), Huaraz, Peru