Mostrando 1 - 3 Resultados de 3 Para Buscar 'Endries, J. L.', tiempo de consulta: 0.01s Limitar resultados
1
artículo
This study used the first detailed radar measurements of the vertical structure of precipitation obtained in the central Andes of southern Peru and Bolivia to investigate the diurnal cycle and vertical structure of precipitation and melting-layer heights in the tropical Andes. Vertically pointing 24.1-GHz Micro Rain Radars in Cusco, Peru (3350 m MSL, August 2014–February 2015), and La Paz, Bolivia (3440 m MSL, October 2015–February 2017), provided continuous 1-min profiles of reflectivity and Doppler velocity. The time–height data enabled the determination of precipitation timing, melting-layer heights, and the identification of convective and stratiform precipitation features. Rawinsonde data, hourly observations of meteorological variables, and satellite and reanalysis data provided additional insight into the characteristics of these precipitation events. The radar data revealed...
2
artículo
Along with air temperatures, the freezing level height (FLH) has risen over the last decades. The mass balance of tropical glaciers in Peru is highly sensitive to a rise in the FLH, mainly due to a decrease in accumulation and increase of energy for ablation caused by reduced albedo. Knowledge of future changes in the FLH is thus crucial to estimating changes in glacier extents. Since in situ data are scarce at altitudes where glaciers exist (above ~4800 m above sea level (asl)), reliable FLH estimates must be derived from multiple data types. Here we assessed the FLHs and their spatiotemporal variability, as well as the related snow/rain transition in the two largest glacier-covered regions in Peru by combining data from two climate reanalysis products, Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar Bright Band data, Micro Rain Radar data, and meteorological ground stati...
3
artículo
Precipitation variability in tropical high mountains is a fundamental yet poorly understood factor influencing local climatic expression and a variety of environmental processes, including glacier behavior and water resources. Precipitation type, diurnality, frequency, and amount influence hydrological runoff, surface albedo, and soil moisture, whereas cloud cover associated with precipitation events reduces solar irradiance at the surface. Considerable uncertainty remains in the multiscale atmospheric processes influencing precipitation patterns and their associated regional variability in the tropical Andes—particularly related to precipitation phase, timing, and vertical structure. Using data from a variety of sources—including new citizen science precipitation stations; new high-elevation comprehensive precipitation monitoring stations at Chacaltaya, Bolivia, and the Quelccaya Ic...