1
ponencia
Publicado 2016
Enlace
Enlace
In Peru, about 50% of the energy is produced from hydropower plants. An important amount of this energy is produced with water from glaciated catchments. In these catchments river streamflow is furthermore needed for other socio-economic activities such as agriculture. However, the amount and seasonality of water from glacial melt is expected to undergo strong changes. As glaciers are projected to further decline with continued warming, runoff will become more and more sensitive to possible changes in precipitation patterns. Moreover, as stated by a recent study (Neukom et al., 2015), wet season precipitation sums in the Central Andes could decrease up to 19-33 % by the end of the 21st century compared to present-day conditions. Here, we investigate future runoff availability for selected glacierized catchments in the Peruvian Andes. In a first step, we apply a simplified energy balance ...
2
objeto de conferencia
Publicado 2017
Enlace
Enlace
In many regions of Peru, the competition for limited hydrological resources already represents a large risk for conflicts. In this context, and within the circumstances of climate change, there is a great interest in estimating the future loss of Peruvian glaciers. Solid precipitation on glaciers, which affects the shortwave radiation budget via its effects on albedo, in general reduces ablation. For that reason, the height of the upper level of the transition zone between liquid and solid precipitation (snowfall level height) is considered to play a critical role. This snowfall level height is linked to air temperature. The observed and projected warming of the atmosphere is therefore affecting the glaciers amongst others by changing the snowfall level height. Despite the potential significance of these changes for Peruvian glaciers, the relations between snowfall level heights, glacier...