1
artículo
Relative homogenization methods assume that measurements of nearby stations experience similar climate signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru, however, networks often suffer from low-station density. The aim of this study is to quantify the influence of network density on homogenization. To this end, the homogenization method HOMER was applied to an artificially thinned Swiss network. Four homogenization experiments, reflecting different homogenization approaches, were examined. Such approaches include diverse levels of interaction of the homogenization operators with HOMER, and different application of metadata. To evaluate the performance of HOMER in the sparse networks, a reference series was built by applying HOMER under the best possible conditions. Applied in completely automatic mode, HOMER decreas...
2
artículo
Seasonal predictions have a great socioeconomic potential if they are reliable and skillful. In this study, we assess the prediction performance of SEAS5, version 5 of the seasonal prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF), over South America against homogenized station data. For temperature, we find the highest prediction performances in the tropics during austral summer, where the probability that the predictions correctly discriminate different observed outcomes is 70%. In regions lying to the east of the Andes, the predictions of maximum and minimum temperature still exhibit considerable performance, while farther to the south in Chile and Argentina the temperature prediction performance is low. Generally, the prediction performance of minimum temperature is slightly lower than for maximum temperature. The prediction performance of precipitat...
3
artículo
Publicado 2020
Enlace
Enlace
En este estudio presentamos el enfoque y los principales resultados del proyecto Climandes.