The influence of station density on climate data homogenization

Descripción del Articulo

Relative homogenization methods assume that measurements of nearby stations experience similar climate signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru, however, networks often suffer from low-station density. The aim of this...

Descripción completa

Detalles Bibliográficos
Autores: Gubler, S., Hunziker, Stefan, Begert, M., Croci-Maspoli, M., Konzelmann, Thomas, Brönnimann, Stefan, Schwierz, C., Oria, Clara, Rosas, Gabriela
Formato: artículo
Fecha de Publicación:2017
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/84
Enlace del recurso:https://hdl.handle.net/20.500.12542/84
https://doi.org/10.1002/joc.5114
Nivel de acceso:acceso abierto
Materia:HOMER
Homogenization
Metadata
Station density
temporal consistency, trend accuracy
https://purl.org/pe-repo/ocde/ford#1.05.10
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
Descripción
Sumario:Relative homogenization methods assume that measurements of nearby stations experience similar climate signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru, however, networks often suffer from low-station density. The aim of this study is to quantify the influence of network density on homogenization. To this end, the homogenization method HOMER was applied to an artificially thinned Swiss network. Four homogenization experiments, reflecting different homogenization approaches, were examined. Such approaches include diverse levels of interaction of the homogenization operators with HOMER, and different application of metadata. To evaluate the performance of HOMER in the sparse networks, a reference series was built by applying HOMER under the best possible conditions. Applied in completely automatic mode, HOMER decreases the reliability of temperature records. Therefore, automatic use of HOMER is not recommended. If HOMER is applied in interactive mode, the reliability of temperature and precipitation data may be increased in sparse networks. However, breakpoints must be inserted conservatively. Information from metadata should be used only to determine the exact timing of statistically detected breaks. Insertion of additional breakpoints based solely on metadata may lead to harmful corrections due to the high noise in sparse networks.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).