The influence of station density on climate data homogenization

Descripción del Articulo

Relative homogenization methods assume that measurements of nearby stations experience similar climate signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru, however, networks often suffer from low-station density. The aim of this...

Descripción completa

Detalles Bibliográficos
Autores: Gubler, S., Hunziker, Stefan, Begert, M., Croci-Maspoli, M., Konzelmann, Thomas, Brönnimann, Stefan, Schwierz, C., Oria, Clara, Rosas, Gabriela
Formato: artículo
Fecha de Publicación:2017
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/84
Enlace del recurso:https://hdl.handle.net/20.500.12542/84
https://doi.org/10.1002/joc.5114
Nivel de acceso:acceso abierto
Materia:HOMER
Homogenization
Metadata
Station density
temporal consistency, trend accuracy
https://purl.org/pe-repo/ocde/ford#1.05.10
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
id SEAM_48dfe64255fd7524bcb01c862b08f9b3
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/84
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.en_US.fl_str_mv The influence of station density on climate data homogenization
title The influence of station density on climate data homogenization
spellingShingle The influence of station density on climate data homogenization
Gubler, S.
HOMER
Homogenization
Metadata
Station density
temporal consistency, trend accuracy
https://purl.org/pe-repo/ocde/ford#1.05.10
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
title_short The influence of station density on climate data homogenization
title_full The influence of station density on climate data homogenization
title_fullStr The influence of station density on climate data homogenization
title_full_unstemmed The influence of station density on climate data homogenization
title_sort The influence of station density on climate data homogenization
author Gubler, S.
author_facet Gubler, S.
Hunziker, Stefan
Begert, M.
Croci-Maspoli, M.
Konzelmann, Thomas
Brönnimann, Stefan
Schwierz, C.
Oria, Clara
Rosas, Gabriela
author_role author
author2 Hunziker, Stefan
Begert, M.
Croci-Maspoli, M.
Konzelmann, Thomas
Brönnimann, Stefan
Schwierz, C.
Oria, Clara
Rosas, Gabriela
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gubler, S.
Hunziker, Stefan
Begert, M.
Croci-Maspoli, M.
Konzelmann, Thomas
Brönnimann, Stefan
Schwierz, C.
Oria, Clara
Rosas, Gabriela
dc.subject.en_US.fl_str_mv HOMER
Homogenization
Metadata
Station density
temporal consistency, trend accuracy
topic HOMER
Homogenization
Metadata
Station density
temporal consistency, trend accuracy
https://purl.org/pe-repo/ocde/ford#1.05.10
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.sinia.none.fl_str_mv investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
description Relative homogenization methods assume that measurements of nearby stations experience similar climate signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru, however, networks often suffer from low-station density. The aim of this study is to quantify the influence of network density on homogenization. To this end, the homogenization method HOMER was applied to an artificially thinned Swiss network. Four homogenization experiments, reflecting different homogenization approaches, were examined. Such approaches include diverse levels of interaction of the homogenization operators with HOMER, and different application of metadata. To evaluate the performance of HOMER in the sparse networks, a reference series was built by applying HOMER under the best possible conditions. Applied in completely automatic mode, HOMER decreases the reliability of temperature records. Therefore, automatic use of HOMER is not recommended. If HOMER is applied in interactive mode, the reliability of temperature and precipitation data may be increased in sparse networks. However, breakpoints must be inserted conservatively. Information from metadata should be used only to determine the exact timing of statistically detected breaks. Insertion of additional breakpoints based solely on metadata may lead to harmful corrections due to the high noise in sparse networks.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2019-07-27T19:04:44Z
dc.date.available.none.fl_str_mv 2019-07-27T19:04:44Z
dc.date.issued.fl_str_mv 2017-11
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.none.fl_str_mv text/publicacion cientifica
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/84
dc.identifier.isni.none.fl_str_mv 0000 0001 0746 0446
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/joc.5114
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/84
url https://hdl.handle.net/20.500.12542/84
https://doi.org/10.1002/joc.5114
identifier_str_mv 0000 0001 0746 0446
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0899-8418
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 3.0 United States
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/us/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 3.0 United States
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
dc.publisher.en_US.fl_str_mv John Wiley and Sons Ltd
dc.source.es_PE.fl_str_mv Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio Institucional - SENAMHI
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
dc.source.volume.es_PE.fl_str_mv 37
dc.source.issue.es_PE.fl_str_mv 13
dc.source.initialpage.es_PE.fl_str_mv 4670
dc.source.endpage.es_PE.fl_str_mv 4683
dc.source.journal.es_PE.fl_str_mv International Journal of Climatology
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/1/10.1002_joc.5114.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/2/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/3/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/4/10.1002_joc.5114.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/5/10.1002_joc.5114.pdf.jpg
bitstream.checksum.fl_str_mv 89e8319f0c30ed43a714e2d0bf76425c
80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
65ebf49fce8402b227356c4c0f20c03f
8796a325cd7e9045c28c046d18e5913b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1808916940747440128
spelling Gubler, S.Hunziker, StefanBegert, M.Croci-Maspoli, M.Konzelmann, ThomasBrönnimann, StefanSchwierz, C.Oria, ClaraRosas, Gabriela2019-07-27T19:04:44Z2019-07-27T19:04:44Z2017-11https://hdl.handle.net/20.500.12542/840000 0001 0746 0446https://doi.org/10.1002/joc.5114https://hdl.handle.net/20.500.12542/84Relative homogenization methods assume that measurements of nearby stations experience similar climate signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru, however, networks often suffer from low-station density. The aim of this study is to quantify the influence of network density on homogenization. To this end, the homogenization method HOMER was applied to an artificially thinned Swiss network. Four homogenization experiments, reflecting different homogenization approaches, were examined. Such approaches include diverse levels of interaction of the homogenization operators with HOMER, and different application of metadata. To evaluate the performance of HOMER in the sparse networks, a reference series was built by applying HOMER under the best possible conditions. Applied in completely automatic mode, HOMER decreases the reliability of temperature records. Therefore, automatic use of HOMER is not recommended. If HOMER is applied in interactive mode, the reliability of temperature and precipitation data may be increased in sparse networks. However, breakpoints must be inserted conservatively. Information from metadata should be used only to determine the exact timing of statistically detected breaks. Insertion of additional breakpoints based solely on metadata may lead to harmful corrections due to the high noise in sparse networks.Por paresengJohn Wiley and Sons Ltdurn:issn:0899-8418Attribution-NonCommercial-ShareAlike 3.0 United Statesinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/us/Servicio Nacional de Meteorología e Hidrología del PerúRepositorio Institucional - SENAMHI371346704683International Journal of Climatologyreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIHOMERHomogenizationMetadataStation densitytemporal consistency, trend accuracyhttps://purl.org/pe-repo/ocde/ford#1.05.10investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana AmbientalThe influence of station density on climate data homogenizationinfo:eu-repo/semantics/articletext/publicacion cientificaORIGINAL10.1002_joc.5114.pdf10.1002_joc.5114.pdfapplication/pdf1590113http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/1/10.1002_joc.5114.pdf89e8319f0c30ed43a714e2d0bf76425cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXT10.1002_joc.5114.pdf.txt10.1002_joc.5114.pdf.txtExtracted texttext/plain66237http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/4/10.1002_joc.5114.pdf.txt65ebf49fce8402b227356c4c0f20c03fMD54THUMBNAIL10.1002_joc.5114.pdf.jpg10.1002_joc.5114.pdf.jpgGenerated Thumbnailimage/jpeg7173http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/84/5/10.1002_joc.5114.pdf.jpg8796a325cd7e9045c28c046d18e5913bMD5520.500.12542/84oai:repositorio.senamhi.gob.pe:20.500.12542/842024-08-20 16:50:31.134Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).