Mostrando 1 - 3 Resultados de 3 Para Buscar 'Calanca, P.', tiempo de consulta: 0.00s Limitar resultados
1
artículo
Projected future trends in water availability are associated with large uncertainties in many regions of the globe. In mountain areas with complex topography, climate models have often limited capabilities to adequately simulate the precipitation variability on small spatial scales. Also, their validation is hampered by typically very low station density. In the Central Andes of South America, a semi-arid high-mountain region with strong seasonality, zonal wind in the upper troposphere is a good proxy for interannual precipitation variability. Here, we combine instrumental measurements, reanalysis and paleoclimate data, and a 57-member ensemble of CMIP5 model simulations to assess changes in Central Andes precipitation over the period AD 1000-2100. This new database allows us to put future projections of precipitation into a previously missing multi-centennial and pre-industrial context....
2
artículo
The Andes as mountain regions worldwide, provide fundamental resources, not only for the local population. Due to the topographic characteristics, the potential for natural hazards is higher than elsewhere. In these areas, assessments of climate change impacts and the development of adequate adaptation strategies therefore become particular important. The data basis, however, is often scarce. Moreover, perceptions of changes and needs are often divergent between national and local levels, which make the implementation of adaptation measures a challenge. Taking the Peruvian Andes as an example, this paper aims at initiating a discussion about scientific baseline and integrative concepts needed to deal with the adverse effects of climate change in mountain regions.
3
artículo
The Andes as mountain regions worldwide, provide fundamental resources, not only for the local population. Due to the topographic characteristics, the potential for natural hazards is higher than elsewhere. In these areas, assessments of climate change impacts and the development of adequate adaptation strategies therefore become particular important. The data basis, however, is often scarce. Moreover, perceptions of changes and needs are often divergent between national and local levels, which make the implementation of adaptation measures a challenge. Taking the Peruvian Andes as an example, this paper aims at initiating a discussion about scientific baseline and integrative concepts needed to deal with the adverse effects of climate change in mountain regions.