Mostrando 1 - 13 Resultados de 13 Para Buscar 'Mark, Bryan G.', tiempo de consulta: 0.08s Limitar resultados
1
artículo
Original abstract: Discharge measurements, precipitation observations and hydrochemical samples from catchments of the Callejon de Huaylas watershed draining the Cordillera Blanca to the Rio Santa, Peru, facilitate estimating the glacier meltwater contribution to streamflow over different spatial scales using water balance and end-member mixing computations. A monthly water balance of the Yanamarey Glacier catchment shows elevated annual discharge over December 2001–July 2004 compared to 1998–1999, with net glacier mass loss in all months. Glacial melt now accounts for an estimated 58% of annual mean discharge, 23% greater than 1998–1999. At Lake Querococha, below Yanamarey (3.4% glacierized), a hydrochemical end-member mixing model estimates that 50% of the streamflow is derived from the glacier catchment. Average concentrations from the Rio Santa leaving the Callejon de Huaylas (...
2
artículo
Original abstract: We use a combination of aerial photogrammetry, satellite imagery, andd ifferential GPS mapping to quantify the volume of ice lost between AD 1962 and 1999 from three glaciers on Nevado Queshque in the Cordillera Blanca, Peru´ ( 101S). The largest averagedsurface lowering (thinning) occurredin the southwest aspect (22 m) andthe least in the eastern aspect (5 m). A heuristic sensitivity analysis indicates that 9.3Wm 2 was requiredto melt the total observedice loss and this can be explainedby sensible heat transfer relatedto a temperature rise of 1 1C, combinedwith a latent heat decrease relatedto a 0.14 g kg 1 increase in specific humidity. A first-difference analysis of temperature records from 29 stations in the Cordillera Blanca shows an average rising trend of 0.26 1C per decade over the 37 year interval, more than adequate to supply the hypothesized sensible heat t...
3
artículo
Original abstract: Climate change is forcing dramatic glacier mass loss in the Cordillera Blanca, Peru, resulting in hydrologic transformations across the Rio Santa watershed and increasing human vulnerability. This article presents results from two years of transdisciplinary collaborative research evaluating the complex relationships between coupled environmental and social change in the region. First, hydrologic results suggest there has been an average increase of 1.6 (± 1.1) percent in the specific discharge of the more glacier-covered catchments (>20 percent glacier area) as a function of changes in stable isotopes of water (d18O and d2H) from 2004 to 2006. Second, there is a large (mean 60 percent) component of groundwater in dry season discharge based on results from the hydrochemical basin characterization method. Third, findings from extensive key interviews and seventy-two ran...
4
artículo
Original abstract: Discharge measurements, climate observations and hydrochemical samples gathered monthly (1998/99) in the Yanamarey and Uruashraju glacier-fed catchments of the Cordillera Blanca, Peru, permit an analysis of the glacier meltwater contribution to stream-flow. These glacier catchments feed the Río Santa, which discharges into the Pacific Ocean. Based on a water-balance computation, glacier melt contributes an estimated 35% of the average discharge from the catchments. For comparison, a volumetric end-member mixing model of oxygen isotopes shows glacier melt contributes 30–45% to the total annual discharge. Based on stream geochemistry, discharge from the Yanamarey glacier catchment provides 30% of the annual volume discharged from the Querococha watershed, which is <10% glacierized. By analogy, the larger Río Santa watershed, also <10% glacierized, receives at least 1...
5
artículo
Original abstract: Observations on glacier extent from Ecuador, Peru and Bolivia give a detailed and unequivocal account of rapid shrinkage of tropical Andean glaciers since the Little Ice Age (LIA). This retreat however, was not continuous but interrupted by several periods of stagnant or even advancing glaciers, most recently around the end of the 20th century. New data from mass balance networks established on over a dozen glaciers allows comparison of the glacier behavior in the inner and outer tropics. It appears that glacier variations are quite coherent throughout the region, despite different sensitivities to climatic forcing such as temperature, precipitation, humidity, etc. In parallel with the glacier retreat, climate in the tropical Andes has changed significantly over the past 50–60 years. Temperature in the Andes has increased by approximately 0.1 °C/decade, with only tw...
6
artículo
Original abstract: The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer) tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes), which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca) and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier ...
7
artículo
Original abstract: An inventory of the lakes within the Cordillera Blanca of Peru was made based on manual analysis of high resolution optical images and was verified during field surveys. In total, 882 lakes were detected, classified and described by several qualitative and quantitative characteristics. The majority of the lakes were characterised as moraine-dammed lakes (35.2%), followed by bedrock-dammedTropical glaciers supply approximately half of dry-season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows and other proglacial geomorphic features. A better understanding of the hydrogeology of alpine groundwater, including sources, storage zones, and the locations and magnitudes of contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrol...
8
artículo
Original abstract: Glacier shrinkage caused by climate change is likely to trigger diminished and less consistent stream flow in glacier-fed watersheds worldwide. To understand, model, and adapt to these climate-glacier-water changes, it is vital to integrate the analysis of both water availability (the domain of hydrologists) and water use (the focus for social scientists). Drawn from a case study of the Santa River watershed below Peru’s glaciated Cordillera Blanca mountain range, this paper provides a holistic hydro-social framework that identifies five major human variables critical to hydrological modeling because these forces have profoundly influenced water use over the last 60 years: (1) political agendas and economic development; (2) governance: laws and institutions; (3) technology and engineering; (4) land and resource use; and (5) societal responses. Notable shifts in Santa...
9
artículo
Original abstract: Glaciers in the Cordillera Blanca, Peru, are undergoing rapid retreat, in large part due to climate change. These changes are significantly altering water availability in the region and pose critical risks to local populations that are highly dependent on these resources for livelihoods. We examine these issues through an interdisciplinary and linked evaluation of hydrological change and livelihood vulnerability in the Yanamarey watershed. Physical observations of the Yanamarey glacier show acceleration in frontal retreat at a rate of 8 m decade¿-¿1 since 1970, accompanied by total volume loss on the order of 0.022 km3. Hydrological and hydrochemical analyses document a possible transformation of stream flow over the past decade as the seasonal storage capacity of the glacier has degraded. Recent stream discharge measurements from the proglacial lake below the glacie...
10
artículo
Original abstract: The tropical glaciers of the Cordillera Blanca, Peru, are rapidly retreating, resulting in complex impacts on the hydrology of the upper Río Santa watershed. The effect of this retreat on water resources is evaluated by analyzing historical and recent time series of daily discharge at nine measurement points. Using the Mann-Kendall nonparametric statistical test, the significance of trends in three hydrograph parameters was studied. Results are interpreted using synthetic time series generated from a hydrologic model that calculates hydrographs based on glacier retreat sequences. The results suggest that seven of the nine study watersheds have probably crossed a critical transition point, and now exhibit decreasing dry-season discharge. Our results suggest also that once the glaciers completely melt, annual discharge will be lower than present by 2-30% depending on th...
11
artículo
Filiación institucional de autor: Alejo Cochachín Rapre / Autoridad Nacional del Agua - Unidad de Glaciología y Recursos Hídricos (ANA-UGRH), Huaraz, Peru
12
artículo
Accelerating mountain glacier recession in a warming climate threatens the sustainability of mountain water resources. The extent to which groundwater will provide resilience to these water resources is unknown, in part due to a lack of data and poorly understood interactions between groundwater and surface water. Here we address this knowledge gap by linking climate, glaciers, surface water, and groundwater into an integrated model of the Shullcas Watershed, Peru, in the tropical Andes, the region experiencing the most rapid mountain‐glacier retreat on Earth. For a range of climate scenarios, our model projects that glaciers will disappear by 2100. The loss of glacial meltwater will be buffered by relatively consistent groundwater discharge, which only receives minor recharge (~2%) from glacier melt. However, increasing temperature and associated evapotranspiration, alongside potentia...
13
artículo
Filiación institucional de autor: Alejo Cochachín Rapre / Autoridad Nacional del Agua - Unidad de Glaciología y Recursos Hídricos (ANA-UGRH), Huaraz, Peru