1
artículo
Publicado 2024
Enlace
Enlace
Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the predi...
2
tesis de grado
Publicado 2024
Enlace
Enlace
River floods are common natural phenomena that occur when the flow of water exceeds the capacity of a river due to excessive rainfall. In the Peruvian territory, the heavy rains of 2010 had consequences of great magnitude, leaving more than 5000 people affected and 25 dead in the Peruvian Andes. This research aimed to analyze and determine the level of risk due to river floods in communities of the Peruvian Andes in terms of hazard and vulnerability, using a semi-quantitative methodology and applying a multi-criteria analysis with vector information and raster from the national spatial data infrastructure that acted as triggering and conditioning factors, as well as conducting fieldwork with the application of targeted surveys. Then, the geoprocessing of thematic maps through GIS software was carried out. The research findings indicate that virtually the entire study area, approximately ...
3
artículo
Publicado 2024
Enlace
Enlace
Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the predi...
4
artículo
Publicado 2025
Enlace
Enlace
Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetativ...
5
artículo
Publicado 2025
Enlace
Enlace
Heavy metal contamination in rivers is a serious environmental and public health concern, especially in areas affected by mining. This study evaluated the levels of contamination and the associated ecological and carcinogenic risks in the sediments of the Cunas River, located in the central highlands of Peru. Sediment samples were collected from upstream and downstream sections. Several metals and metalloids were analyzed, including copper (Cu), chromium (Cr), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), zinc (Zn), antimony (Sb), arsenic (As), and cadmium (Cd). The ecological risk assessment focused on ten of these elements, while carcinogenic and non-carcinogenic risks were assessed for seven metals selected based on their toxicological importance. The results showed that Cd and Pb concentrations were higher in the downstream section. Cd and As excee...
6
artículo
Publicado 2025
Enlace
Enlace
The Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health implications of 14 heavy metals, metalloids, and trace elements in surface soils surrounding the lake. Using 211 soil samples, we integrated remote sensing, land cover classification, and Random Forest machine learning models with spectral, edaphic, topographic, and proximity-based environmental covariates to predict contamination patterns and assess risk. Results reveal extreme contamination, with arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn) concentrations exceeding ecological thresholds by over 100-fold in agricultural zones. Ecological risk assessments using contamination degree (mCD), ...
7
artículo
Publicado 2024
Enlace
Enlace
Among solar energy technologies, differences exist in terms of costs, performance, and environmental sustainability. Flatplate solar collectors, solar towers, and parabolic dish systems offer high thermal efficiency and versatility, but they may be more costly and bulky compared to other collector models. This study focused on evaluating the efficiency of a cylindrical parabolic collector (CPC) for the production of domestic hot water in a high Andean region of Peru, using the F-Chart method. Its performance was estimated considering the energy demand for hot water in a single-family home with four occupants, in accordance with national regulations and international recommendations. Additionally, the collector area, water temperature, and incident solar radiation were determined based on meteorological data obtained using the PVsyst software. On the other hand, the F-Chart methodology wa...
8
artículo
Publicado 2025
Enlace
Enlace
The Polylepis genus, endemic to the South American Andes, faces significant threats due to environmental variations, which jeopardize its growth and survival. This situation underscores the urgent need to develop conservation strategies. The present research assesses the influence of meteorological variables, such as temperature and humidity, on the growth and adaptation of various Polylepis species in the central Peruvian Andes, aiming to optimize reforestation and sustainable management practices. The study was conducted in experimental plots at the Santa Ana Agricultural Station in Junín, Peru, where Polylepis saplings, obtained from different localities, were planted. Over two years, phenotypic variables (height and diameter) and meteorological variables (precipitation, humidity, temperature, and wind speed) were monitored to evaluate the relationship between environmental condition...
9
artículo
Publicado 2024
Enlace
Enlace
The biomass that accumulates on the forest floor and its subsequent decomposition play an important role in maintaining the productivity of different terrestrial ecosystems by constituting the main nutrient flow to the soil. The objective of the study focused on analyzing the nutrient contribution to the soil derived from the aboveground biomass of three native forest species in relict forests of the Central Peruvian Sierra with socioeconomic and environmental relevance. Using random delineation methods, soil samples were collected at 20-30 cm depth, which were subjected to physical, chemical, and biological analyses, developing the determination of a Soil Quality Index (SQI). The results highlight that forests of Polylepis racemosa and Alnus acuminata significantly exhibit a higher SQI, with values of 0.66 and 0.58, respectively, compared to Escallonia resinosa, with the forestless syst...
10
artículo
Publicado 2024
Enlace
Enlace
Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines ...
11
artículo
Publicado 2024
Enlace
Enlace
Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines ...
12
artículo
Publicado 2025
Enlace
Enlace
Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of...
13
artículo
Publicado 2024
Enlace
Enlace
The lack of precise methods for estimating forest biomass results in both economic losses and incorrect decisions in the management of forest plantations. In response to this issue, this study evaluated the effectiveness of using the DJI Zenmuse L1 LiDAR, mounted on a DJI Matrice 300 RTK UAV, to provide three-dimensional measurements of canopy structure and estimate the aboveground biomass of Eucalyptus globulus. Various LiDAR metrics were employed alongside field measurements to calibrate predictive models using multiple regression and machine learning algorithms. The results at the individual tree level show that RF is the most accurate model, with a coefficient of determination (R²) of 0.76 in the training set and 0.66 in the test set, outperforming Elastic Net (R² of 0.58 and 0.57, respectively). At the plot level, a multiple regression model achieved an R² of 0.647, highlighting ...