Mostrando 1 - 10 Resultados de 10 Para Buscar 'Ccopi Trucios, Dennis', tiempo de consulta: 1.15s Limitar resultados
1
artículo
Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the predi...
2
artículo
Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the predi...
3
artículo
The Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health implications of 14 heavy metals, metalloids, and trace elements in surface soils surrounding the lake. Using 211 soil samples, we integrated remote sensing, land cover classification, and Random Forest machine learning models with spectral, edaphic, topographic, and proximity-based environmental covariates to predict contamination patterns and assess risk. Results reveal extreme contamination, with arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn) concentrations exceeding ecological thresholds by over 100-fold in agricultural zones. Ecological risk assessments using contamination degree (mCD), ...
4
artículo
Among solar energy technologies, differences exist in terms of costs, performance, and environmental sustainability. Flatplate solar collectors, solar towers, and parabolic dish systems offer high thermal efficiency and versatility, but they may be more costly and bulky compared to other collector models. This study focused on evaluating the efficiency of a cylindrical parabolic collector (CPC) for the production of domestic hot water in a high Andean region of Peru, using the F-Chart method. Its performance was estimated considering the energy demand for hot water in a single-family home with four occupants, in accordance with national regulations and international recommendations. Additionally, the collector area, water temperature, and incident solar radiation were determined based on meteorological data obtained using the PVsyst software. On the other hand, the F-Chart methodology wa...
5
artículo
The Polylepis genus, endemic to the South American Andes, faces significant threats due to environmental variations, which jeopardize its growth and survival. This situation underscores the urgent need to develop conservation strategies. The present research assesses the influence of meteorological variables, such as temperature and humidity, on the growth and adaptation of various Polylepis species in the central Peruvian Andes, aiming to optimize reforestation and sustainable management practices. The study was conducted in experimental plots at the Santa Ana Agricultural Station in Junín, Peru, where Polylepis saplings, obtained from different localities, were planted. Over two years, phenotypic variables (height and diameter) and meteorological variables (precipitation, humidity, temperature, and wind speed) were monitored to evaluate the relationship between environmental condition...
6
artículo
The biomass that accumulates on the forest floor and its subsequent decomposition play an important role in maintaining the productivity of different terrestrial ecosystems by constituting the main nutrient flow to the soil. The objective of the study focused on analyzing the nutrient contribution to the soil derived from the aboveground biomass of three native forest species in relict forests of the Central Peruvian Sierra with socioeconomic and environmental relevance. Using random delineation methods, soil samples were collected at 20-30 cm depth, which were subjected to physical, chemical, and biological analyses, developing the determination of a Soil Quality Index (SQI). The results highlight that forests of Polylepis racemosa and Alnus acuminata significantly exhibit a higher SQI, with values of 0.66 and 0.58, respectively, compared to Escallonia resinosa, with the forestless syst...
7
artículo
Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines ...
8
artículo
Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines ...
9
artículo
Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of...
10
artículo
The lack of precise methods for estimating forest biomass results in both economic losses and incorrect decisions in the management of forest plantations. In response to this issue, this study evaluated the effectiveness of using the DJI Zenmuse L1 LiDAR, mounted on a DJI Matrice 300 RTK UAV, to provide three-dimensional measurements of canopy structure and estimate the aboveground biomass of Eucalyptus globulus. Various LiDAR metrics were employed alongside field measurements to calibrate predictive models using multiple regression and machine learning algorithms. The results at the individual tree level show that RF is the most accurate model, with a coefficient of determination (R²) of 0.76 in the training set and 0.66 in the test set, outperforming Elastic Net (R² of 0.58 and 0.57, respectively). At the plot level, a multiple regression model achieved an R² of 0.647, highlighting ...