Using UAV images and phenotypic traits to predict potato morphology and yield in Peru

Descripción del Articulo

Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on p...

Descripción completa

Detalles Bibliográficos
Autores: Ccopi Trucios, Dennis, Ortega Quispe, Kevin, Castañeda Tinco, Italo, Rios Chavarria, Claudia, Enriquez Pinedo, Lucia, Patricio Rosales, Solanch, Ore Aquino, Zoila, Casanova Nuñez-Melgar, David, Agurto Piñarreta, Alex, Zúñiga López, Luz Noemí, Urquizo Barrera, Julio
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2610
Enlace del recurso:http://hdl.handle.net/20.500.12955/2610
https://doi.org/10.3390/agriculture14111876
Nivel de acceso:acceso abierto
Materia:Precision agriculture
Remote sensing
Crop monitoring
Machine learning
https://purl.org/pe-repo/ocde/ford#4.01.06
Descripción
Sumario:Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).