Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation

Descripción del Articulo

The Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health impli...

Descripción completa

Detalles Bibliográficos
Autores: Pizarro Carcausto, Samuel Edwin, Requena Rojas, Edilson Jimmy, Barboza, Elgar, Peña Elme, Eunice Dorcas, Arias Arredondo, Alberto Gilmer, Ccopi Trucios, Dennis
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2854
Enlace del recurso:http://hdl.handle.net/20.500.12955/2854
https://doi.org/10.1016/j.scitotenv.2025.180327
Nivel de acceso:acceso abierto
Materia:Heavy metals
Ecological risk assessment
Human health risk
Remote sensing
Machine learning
Soil contamination
Andean wetlands
Metales pesados
Evaluación de riesgos ecológicos
Riesgo para la salud humana
Teledetección
Aprendizaje automático
Contaminación del suelo
Humedales andinos
https://purl.org/pe-repo/ocde/ford#4.01.04
Human health; Salud humana; Rangelands; Pastizales; Andean region; Región andina
Descripción
Sumario:The Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health implications of 14 heavy metals, metalloids, and trace elements in surface soils surrounding the lake. Using 211 soil samples, we integrated remote sensing, land cover classification, and Random Forest machine learning models with spectral, edaphic, topographic, and proximity-based environmental covariates to predict contamination patterns and assess risk. Results reveal extreme contamination, with arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn) concentrations exceeding ecological thresholds by over 100-fold in agricultural zones. Ecological risk assessments using contamination degree (mCD), pollution load index (PLI), and risk index (RI) indicated that over 99 % of the study area exhibits very high to ultra-high contamination levels. Human health risk analysis identified unacceptable carcinogenic risks from As, Pb, and Cr across adult and pediatric populations, with arsenic presenting the greatest concern. The integration of geospatial tools and machine learning enabled precise identification of contamination hotspots and vulnerable land cover types, demonstrating the value of AI approaches for monitoring contaminated territories. These findings underscore the urgent need for coordinated environmental management, targeted remediation strategies, and community-based monitoring to protect public health and preserve Andean ecosystem integrity.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).