Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation

Descripción del Articulo

The Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health impli...

Descripción completa

Detalles Bibliográficos
Autores: Pizarro Carcausto, Samuel Edwin, Requena Rojas, Edilson Jimmy, Barboza, Elgar, Peña Elme, Eunice Dorcas, Arias Arredondo, Alberto Gilmer, Ccopi Trucios, Dennis
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2854
Enlace del recurso:http://hdl.handle.net/20.500.12955/2854
https://doi.org/10.1016/j.scitotenv.2025.180327
Nivel de acceso:acceso abierto
Materia:Heavy metals
Ecological risk assessment
Human health risk
Remote sensing
Machine learning
Soil contamination
Andean wetlands
Metales pesados
Evaluación de riesgos ecológicos
Riesgo para la salud humana
Teledetección
Aprendizaje automático
Contaminación del suelo
Humedales andinos
https://purl.org/pe-repo/ocde/ford#4.01.04
Human health; Salud humana; Rangelands; Pastizales; Andean region; Región andina
id INIA_d13f2b38665dbb26f103f297a47220e7
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2854
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
title Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
spellingShingle Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
Pizarro Carcausto, Samuel Edwin
Heavy metals
Ecological risk assessment
Human health risk
Remote sensing
Machine learning
Soil contamination
Andean wetlands
Metales pesados
Evaluación de riesgos ecológicos
Riesgo para la salud humana
Teledetección
Aprendizaje automático
Contaminación del suelo
Humedales andinos
https://purl.org/pe-repo/ocde/ford#4.01.04
Human health; Salud humana; Rangelands; Pastizales; Andean region; Región andina
title_short Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
title_full Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
title_fullStr Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
title_full_unstemmed Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
title_sort Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation
author Pizarro Carcausto, Samuel Edwin
author_facet Pizarro Carcausto, Samuel Edwin
Requena Rojas, Edilson Jimmy
Barboza, Elgar
Peña Elme, Eunice Dorcas
Arias Arredondo, Alberto Gilmer
Ccopi Trucios, Dennis
author_role author
author2 Requena Rojas, Edilson Jimmy
Barboza, Elgar
Peña Elme, Eunice Dorcas
Arias Arredondo, Alberto Gilmer
Ccopi Trucios, Dennis
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Pizarro Carcausto, Samuel Edwin
Requena Rojas, Edilson Jimmy
Barboza, Elgar
Peña Elme, Eunice Dorcas
Arias Arredondo, Alberto Gilmer
Ccopi Trucios, Dennis
dc.subject.none.fl_str_mv Heavy metals
Ecological risk assessment
Human health risk
Remote sensing
Machine learning
Soil contamination
Andean wetlands
Metales pesados
Evaluación de riesgos ecológicos
Riesgo para la salud humana
Teledetección
Aprendizaje automático
Contaminación del suelo
Humedales andinos
topic Heavy metals
Ecological risk assessment
Human health risk
Remote sensing
Machine learning
Soil contamination
Andean wetlands
Metales pesados
Evaluación de riesgos ecológicos
Riesgo para la salud humana
Teledetección
Aprendizaje automático
Contaminación del suelo
Humedales andinos
https://purl.org/pe-repo/ocde/ford#4.01.04
Human health; Salud humana; Rangelands; Pastizales; Andean region; Región andina
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.04
dc.subject.agrovoc.none.fl_str_mv Human health; Salud humana; Rangelands; Pastizales; Andean region; Región andina
description The Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health implications of 14 heavy metals, metalloids, and trace elements in surface soils surrounding the lake. Using 211 soil samples, we integrated remote sensing, land cover classification, and Random Forest machine learning models with spectral, edaphic, topographic, and proximity-based environmental covariates to predict contamination patterns and assess risk. Results reveal extreme contamination, with arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn) concentrations exceeding ecological thresholds by over 100-fold in agricultural zones. Ecological risk assessments using contamination degree (mCD), pollution load index (PLI), and risk index (RI) indicated that over 99 % of the study area exhibits very high to ultra-high contamination levels. Human health risk analysis identified unacceptable carcinogenic risks from As, Pb, and Cr across adult and pediatric populations, with arsenic presenting the greatest concern. The integration of geospatial tools and machine learning enabled precise identification of contamination hotspots and vulnerable land cover types, demonstrating the value of AI approaches for monitoring contaminated territories. These findings underscore the urgent need for coordinated environmental management, targeted remediation strategies, and community-based monitoring to protect public health and preserve Andean ecosystem integrity.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-09-11T19:32:38Z
dc.date.available.none.fl_str_mv 2025-09-11T19:32:38Z
dc.date.issued.fl_str_mv 2025-08-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Pizarro, S., Requena-Rojas, E., Barboza, E., Peña-Elme, E., Arias-Arredondo, A., & Ccopi, D. (2025). Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): integrating remote sensing, machine learning, and land cover segmentation. Science of the Total Environment, 999, 180327. https://doi.org/10.1016/j.scitotenv.2025.180327
dc.identifier.issn.none.fl_str_mv 0048-9697
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2854
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.scitotenv.2025.180327
identifier_str_mv Pizarro, S., Requena-Rojas, E., Barboza, E., Peña-Elme, E., Arias-Arredondo, A., & Ccopi, D. (2025). Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): integrating remote sensing, machine learning, and land cover segmentation. Science of the Total Environment, 999, 180327. https://doi.org/10.1016/j.scitotenv.2025.180327
0048-9697
url http://hdl.handle.net/20.500.12955/2854
https://doi.org/10.1016/j.scitotenv.2025.180327
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0048-9697
dc.relation.ispartofseries.none.fl_str_mv Science of the Total Environment
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/8af5bd34-1661-4859-b51d-8ed63e4251f3/download
https://repositorio.inia.gob.pe/bitstreams/a74ac14d-9b24-4833-9aa5-2cc840a4a831/download
bitstream.checksum.fl_str_mv 45a65eea120833f7803f00da586372c7
a1dff3722e05e29dac20fa1a97a12ccf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1844112601376620544
spelling Pizarro Carcausto, Samuel EdwinRequena Rojas, Edilson JimmyBarboza, ElgarPeña Elme, Eunice DorcasArias Arredondo, Alberto GilmerCcopi Trucios, Dennis2025-09-11T19:32:38Z2025-09-11T19:32:38Z2025-08-27Pizarro, S., Requena-Rojas, E., Barboza, E., Peña-Elme, E., Arias-Arredondo, A., & Ccopi, D. (2025). Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): integrating remote sensing, machine learning, and land cover segmentation. Science of the Total Environment, 999, 180327. https://doi.org/10.1016/j.scitotenv.2025.1803270048-9697http://hdl.handle.net/20.500.12955/2854https://doi.org/10.1016/j.scitotenv.2025.180327The Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health implications of 14 heavy metals, metalloids, and trace elements in surface soils surrounding the lake. Using 211 soil samples, we integrated remote sensing, land cover classification, and Random Forest machine learning models with spectral, edaphic, topographic, and proximity-based environmental covariates to predict contamination patterns and assess risk. Results reveal extreme contamination, with arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn) concentrations exceeding ecological thresholds by over 100-fold in agricultural zones. Ecological risk assessments using contamination degree (mCD), pollution load index (PLI), and risk index (RI) indicated that over 99 % of the study area exhibits very high to ultra-high contamination levels. Human health risk analysis identified unacceptable carcinogenic risks from As, Pb, and Cr across adult and pediatric populations, with arsenic presenting the greatest concern. The integration of geospatial tools and machine learning enabled precise identification of contamination hotspots and vulnerable land cover types, demonstrating the value of AI approaches for monitoring contaminated territories. These findings underscore the urgent need for coordinated environmental management, targeted remediation strategies, and community-based monitoring to protect public health and preserve Andean ecosystem integrity.This research was funded by the INIA project “Mejoramiento de los servicios de investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali” CUI 2487112, of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government. We would like to express our deepest gratitude to everyone who contributed to this research at the Santa Ana Experimental Station – Huancayo.application/pdfengElsevierNLurn:issn:0048-9697Science of the Total Environmentinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAHeavy metalsEcological risk assessmentHuman health riskRemote sensingMachine learningSoil contaminationAndean wetlandsMetales pesadosEvaluación de riesgos ecológicosRiesgo para la salud humanaTeledetecciónAprendizaje automáticoContaminación del sueloHumedales andinoshttps://purl.org/pe-repo/ocde/ford#4.01.04Human health; Salud humana; Rangelands; Pastizales; Andean region; Región andinaEcological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentationinfo:eu-repo/semantics/articleORIGINALPizarro_et-al_2025_toxic_rangelands.pdfPizarro_et-al_2025_toxic_rangelands.pdfapplication/pdf18451705https://repositorio.inia.gob.pe/bitstreams/8af5bd34-1661-4859-b51d-8ed63e4251f3/download45a65eea120833f7803f00da586372c7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/a74ac14d-9b24-4833-9aa5-2cc840a4a831/downloada1dff3722e05e29dac20fa1a97a12ccfMD5220.500.12955/2854oai:repositorio.inia.gob.pe:20.500.12955/28542025-09-11 14:32:38.106https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.877373
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).