Mostrando 1 - 7 Resultados de 7 Para Buscar 'Labat, D.', tiempo de consulta: 0.86s Limitar resultados
1
artículo
In this article, we propose an investigation of the modifications of the hydrological response of two Peruvian Amazonas-Andes basins in relationship with the modifications of the precipitation and evapotranspiration rates inferred by the IPCC. These two basins integrate around 10% of the total area of the Amazonian basin. These estimations are based on the application of two monthly hydrological models, GR2M and MWB3, and the climatic projections come from BCM2, CSMK3 and MIHR models for A1B and B1 emission scenarios (SCE A1B and SCE B1). Projections are approximated by two simple scenarios (anomalies and horizon) and annual rainfall rates, evapotranspiration rates and discharge were estimated for the 2020s (2008-2040), 2050s (2041-2070) and 2080s (2071-2099). Annual discharge shows increasing trend over Requena basin (Ucayali river), Puerto Inca basin (Pachitea river), Tambo basin (Tamb...
2
artículo
The hydroclimatology of the Peruvian Amazon-Andes basin (PAB) which surface corresponding to 7% of the Amazon basin is still poorly documented. We propose here an extended and original analysis of the temporal evolution of monthly rainfall, mean temperature (Tmean), maximum temperature (Tmax) and minimum temperature (Tmin) time series over two PABs (Huallaga and Ucayali) over the last 40years. This analysis is based on a new and more complete database that includes 77 weather stations over the 1965-2007 period, and we focus our attention on both annual and seasonal meteorological time series. A positive significant trend in mean temperature of 0.09°C per decade is detected over the region with similar values in the Andes and rainforest when considering average data. However, a high percentage of stations with significant Tmean positive trends are located over the Andes region. Finally, ...
3
artículo
According to the Peruvian agricultural ministry, the Pacific watersheds where the great cities and intense farming are located only benefit from 1% of the available freshwater in Peru. Hence a thorough knowledge of the hydrology of this region is of particular importance. In the paper, analysis of this region and of the two other main Peruvian drainages, the Titicaca and Amazonas are reported. Rainfall and runoff data collected by the Peruvian National Service of Meteorology and Hydrology (SENAMHI) and controlled under the Hydrogeodynamics of the Amazon Basin (HyBAm) project is the basis of this basin-scale study that covers the 1969–2004 period. Beyond the strong contrasting rainfall conditions that differentiate the dry coastal basins and the wet eastern lowlands, details are given about in situ runoff and per basin rainfall distribution in these regions, and about their different al...
4
artículo
Documenting the heterogeneity of rainfall regimes is a prerequisite for water resources management, mitigation of risks associated to extremes weather events and for impact studies. In this paper, we present a method for regionalization of rainfall over the Peruvian Pacific slope and coast, which is the main economic zone of the country and concentrates almost 50% of the population. Our approach is based on a two-step process based on k-means clustering followed by the regional vector method (RVM) applied to a network of 145 rainfall stations covering the period 1964–2011. The advantage of combining cluster analysis and RVM is demonstrated compared with just applying each of these methods. Nine homogeneous regions are identified that depict the salient features of the rainfall variability over the study area. A detailed characterization of the rainfall regime in each of the identified ...
5
artículo
In a context of water scarcity in Peruvian Pacific catchments as a crucial issue for Peru, added to the paucity of data availability, we propose a methodology that provides new perspectives for freshwater availability estimation as a base reference for unimpaired conditions. Under those considerations, a regional discharge of 709 m3/s to the Pacific Ocean is estimated with a significant increasing trend of about 43 m3/s per decade over the 1970–2010 period. To represent the multidecadal behaviour of freshwater runoff along the region, a regional runoff analysis is proposed based on hydrological modelling at annual and monthly time step for unimpaired conditions over the whole 1970–2010 period. Differential Split-Sample Tests are used to assess the hydrological modelling robustness of the GR1A and GR2M conceptual lumped models, showing a satisfactory transposability from dry to wet ye...
6
artículo
Peruvian Pacific drainage catchments only benefit from 2% of the total national available freshwater while they concentrate almost 50% of the population of the country. This situation is likely to lead a severe water scarcity and also constitutes an obstacle to economic development. Catchment runoff fluctuations in response to climate variability and/or human activities can be reflected in extreme events, representing a serious concern (like floods, erosion, droughts) in the study area. To document this crucial issue for Peru, we present here an insightful analysis of the water quantity resource variability of this region, exploring the links between this variability and climate and/or anthropogenic pressure. We first present a detailed analysis of the hydroclimatologic variability at annual timescale and at basin scale over the 1970–2008 period. In addition to corroborating the influe...
7
capítulo de libro
El fenómeno El Niño es el modo dominante de la variabilidad interanual en el Océano Pacífico, resultando de un proceso de interacción entre el océano y la atmósfera en el Pacífico Tropical. Las últimas investigaciones demuestran que existen varias facetas de este fenómeno que varían según las modalidades de interacción entre el océano y la atmosfera así como sus ubicaciones. Existen por lo menos dos tipos de El Niño, con expresiones diferentes sobre la Temperatura Superficial del Mar en el Pacifico Tropical y en la costa de Perú: uno que se desarrolla en el Pacifico Central (tiende a estar asociado a condiciones oceánicas más frías que favorecen el estado árido de la costa peruana y condiciones oceánicas hypóxicas), y otro que se desarrolla en el Pacifico Este (que transforma la costa peruana en una "típica" zona tropical, caracterizada por aguas costeras caliente...