Mostrando 1 - 5 Resultados de 5 Para Buscar 'Frappart, F.', tiempo de consulta: 0.01s Limitar resultados
1
2
artículo
In this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970-2012 period, focusing on the recent April 2012 flooding (55400m3 s-1). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Marañón River, the northern contributor of the Amazonas, occurred sooner than usual (in April instead of May), coinciding with the peak of the Ucayali River, the southern contributor. This concomitance caused a dramatic flood downstream in the Peruvian Amazonas. These results are compared to the amplitude and timing of the three most severe extreme floods (1970-2011). The analysis of the climatic features related to the most important floods (1986, 1993, 1999, and 201...
3
artículo
Documenting the heterogeneity of rainfall regimes is a prerequisite for water resources management, mitigation of risks associated to extremes weather events and for impact studies. In this paper, we present a method for regionalization of rainfall over the Peruvian Pacific slope and coast, which is the main economic zone of the country and concentrates almost 50% of the population. Our approach is based on a two-step process based on k-means clustering followed by the regional vector method (RVM) applied to a network of 145 rainfall stations covering the period 1964–2011. The advantage of combining cluster analysis and RVM is demonstrated compared with just applying each of these methods. Nine homogeneous regions are identified that depict the salient features of the rainfall variability over the study area. A detailed characterization of the rainfall regime in each of the identified ...
4
artículo
In a context of water scarcity in Peruvian Pacific catchments as a crucial issue for Peru, added to the paucity of data availability, we propose a methodology that provides new perspectives for freshwater availability estimation as a base reference for unimpaired conditions. Under those considerations, a regional discharge of 709 m3/s to the Pacific Ocean is estimated with a significant increasing trend of about 43 m3/s per decade over the 1970–2010 period. To represent the multidecadal behaviour of freshwater runoff along the region, a regional runoff analysis is proposed based on hydrological modelling at annual and monthly time step for unimpaired conditions over the whole 1970–2010 period. Differential Split-Sample Tests are used to assess the hydrological modelling robustness of the GR1A and GR2M conceptual lumped models, showing a satisfactory transposability from dry to wet ye...
5
artículo
Peruvian Pacific drainage catchments only benefit from 2% of the total national available freshwater while they concentrate almost 50% of the population of the country. This situation is likely to lead a severe water scarcity and also constitutes an obstacle to economic development. Catchment runoff fluctuations in response to climate variability and/or human activities can be reflected in extreme events, representing a serious concern (like floods, erosion, droughts) in the study area. To document this crucial issue for Peru, we present here an insightful analysis of the water quantity resource variability of this region, exploring the links between this variability and climate and/or anthropogenic pressure. We first present a detailed analysis of the hydroclimatologic variability at annual timescale and at basin scale over the 1970–2008 period. In addition to corroborating the influe...