Text prediction recurrent neural networks using long shortterm memory-dropout

Descripción del Articulo

“Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the L...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Guevara-Ponce, Victor, Ruiz-Alvarado, Daniel, BeltozarClemente, Saul, Sierra-Liñan, Fernando, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Privada Norbert Wiener
Repositorio:UWIENER-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uwiener.edu.pe:20.500.13053/8063
Enlace del recurso:https://hdl.handle.net/20.500.13053/8063
Nivel de acceso:acceso abierto
Materia:"Dropout Prediction Recurrent neural network Text Unit short-term memory"
http://purl.org/pe-repo/ocde/ford#1.02.00
id UWIE_5aa1f72e4217a5a106bd77a2d16fe263
oai_identifier_str oai:repositorio.uwiener.edu.pe:20.500.13053/8063
network_acronym_str UWIE
network_name_str UWIENER-Institucional
repository_id_str 9398
dc.title.es_ES.fl_str_mv Text prediction recurrent neural networks using long shortterm memory-dropout
title Text prediction recurrent neural networks using long shortterm memory-dropout
spellingShingle Text prediction recurrent neural networks using long shortterm memory-dropout
Iparraguirre-Villanueva, Orlando
"Dropout Prediction Recurrent neural network Text Unit short-term memory"
http://purl.org/pe-repo/ocde/ford#1.02.00
title_short Text prediction recurrent neural networks using long shortterm memory-dropout
title_full Text prediction recurrent neural networks using long shortterm memory-dropout
title_fullStr Text prediction recurrent neural networks using long shortterm memory-dropout
title_full_unstemmed Text prediction recurrent neural networks using long shortterm memory-dropout
title_sort Text prediction recurrent neural networks using long shortterm memory-dropout
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Ruiz-Alvarado, Daniel
BeltozarClemente, Saul
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Guevara-Ponce, Victor
Ruiz-Alvarado, Daniel
BeltozarClemente, Saul
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Ruiz-Alvarado, Daniel
BeltozarClemente, Saul
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_ES.fl_str_mv "Dropout Prediction Recurrent neural network Text Unit short-term memory"
topic "Dropout Prediction Recurrent neural network Text Unit short-term memory"
http://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.02.00
description “Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem ““La Ciudad y los perros““ which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.“
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-03-13T19:36:32Z
dc.date.available.none.fl_str_mv 2023-03-13T19:36:32Z
dc.date.issued.fl_str_mv 2022-10-29
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13053/8063
dc.identifier.doi.es_ES.fl_str_mv 10.11591/ijeecs.v29.i3.pp1758-1768
url https://hdl.handle.net/20.500.13053/8063
identifier_str_mv 10.11591/ijeecs.v29.i3.pp1758-1768
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_ES.fl_str_mv ID
dc.source.none.fl_str_mv reponame:UWIENER-Institucional
instname:Universidad Privada Norbert Wiener
instacron:UWIENER
instname_str Universidad Privada Norbert Wiener
instacron_str UWIENER
institution UWIENER
reponame_str UWIENER-Institucional
collection UWIENER-Institucional
bitstream.url.fl_str_mv https://dspace-uwiener.metabuscador.org/bitstreams/a0635dc4-6379-4aa3-ad86-8b27897344e1/download
https://dspace-uwiener.metabuscador.org/bitstreams/3e5dca8a-1437-4097-b64a-0491e3c71d59/download
https://dspace-uwiener.metabuscador.org/bitstreams/7a14416a-40d1-437d-81c2-483ac8f6b9e6/download
https://dspace-uwiener.metabuscador.org/bitstreams/6450af67-81f4-44ec-9a47-274f11afc797/download
bitstream.checksum.fl_str_mv 4fe8dd53e1092d95ca462c032547f67f
8a4605be74aa9ea9d79846c1fba20a33
a9cb78a45952ce87c13dc3e82b66f2a1
1822b611b62cccad4e55b4c82853e022
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Wiener
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1835828782624145408
spelling Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorRuiz-Alvarado, DanielBeltozarClemente, SaulSierra-Liñan, FernandoZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-03-13T19:36:32Z2023-03-13T19:36:32Z2022-10-29https://hdl.handle.net/20.500.13053/806310.11591/ijeecs.v29.i3.pp1758-1768“Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem ““La Ciudad y los perros““ which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.“application/pdfengInstitute of Advanced Engineering and ScienceIDinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"Dropout Prediction Recurrent neural network Text Unit short-term memory"http://purl.org/pe-repo/ocde/ford#1.02.00Text prediction recurrent neural networks using long shortterm memory-dropoutinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINAL29711-60553-1-PB.pdf29711-60553-1-PB.pdfapplication/pdf791310https://dspace-uwiener.metabuscador.org/bitstreams/a0635dc4-6379-4aa3-ad86-8b27897344e1/download4fe8dd53e1092d95ca462c032547f67fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/3e5dca8a-1437-4097-b64a-0491e3c71d59/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXT29711-60553-1-PB.pdf.txt29711-60553-1-PB.pdf.txtExtracted texttext/plain46134https://dspace-uwiener.metabuscador.org/bitstreams/7a14416a-40d1-437d-81c2-483ac8f6b9e6/downloada9cb78a45952ce87c13dc3e82b66f2a1MD53THUMBNAIL29711-60553-1-PB.pdf.jpg29711-60553-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5307https://dspace-uwiener.metabuscador.org/bitstreams/6450af67-81f4-44ec-9a47-274f11afc797/download1822b611b62cccad4e55b4c82853e022MD5420.500.13053/8063oai:dspace-uwiener.metabuscador.org:20.500.13053/80632024-12-13 11:48:22.011https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).