1
artículo
Publicado 2023
Enlace

“With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as ...
2
artículo
Publicado 2023
Enlace

“Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the ...
3
artículo
Publicado 2022
Enlace

Today, web content such as images, text, speeches, and videos are user-generated, and social networks have become increasingly popular as a means for people to share their ideas and opinions. One of the most popular social media for expressing their feelings towards events that occur is Twitter. The main objective of this study is to classify and analyze the content of the affiliates of the Pension and Funds Administration (AFP) published on Twitter. This study incorporates machine learning techniques for data mining, cleaning, tokenization, exploratory analysis, classification, and sentiment analysis. To apply the study and examine the data, Twitter was used with the hashtag #afp, followed by descriptive and exploratory analysis, including metrics of the tweets. Finally, a content analysis was carried out, including word frequency calculation, lemmatization, and classification of words ...
4
artículo
Publicado 2023
Enlace

Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and...
5
artículo
Publicado 2022
Enlace

Technological advances and the massive use of mobile devices have led to the exponential evolution of mobile applications in the health sector. Blood donation centers frequently suffer blood shortages due to lack of donations, which is why blood donation requests are frequently seen on social networks for blood donors in urgent need of a transfusion of a specific blood group. Mobile applications for blood donation are crucial in the health sector, since it allows donors and blood donation centers to communicate immediately to coordinate with each other, minimizing the time to perform the donation process. The present work was to develop a location-based mobile application for the search of blood donors, with the objective of increasing the number of donors, having a greater population reach, and reducing the time to search for blood donors. The results obtained show a significant increas...
6
artículo
“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the data...
7
artículo
“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the data...
8
artículo
“Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem ““La Ciudad y los perros““ which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.“
9
artículo
“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identif...
10
artículo
Publicado 2023
Enlace

“Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the ...
11
artículo
Publicado 2023
Enlace

Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and...
12
artículo
Publicado 2022
Enlace

Today, web content such as images, text, speeches, and videos are user-generated, and social networks have become increasingly popular as a means for people to share their ideas and opinions. One of the most popular social media for expressing their feelings towards events that occur is Twitter. The main objective of this study is to classify and analyze the content of the affiliates of the Pension and Funds Administration (AFP) published on Twitter. This study incorporates machine learning techniques for data mining, cleaning, tokenization, exploratory analysis, classification, and sentiment analysis. To apply the study and examine the data, Twitter was used with the hashtag #afp, followed by descriptive and exploratory analysis, including metrics of the tweets. Finally, a content analysis was carried out, including word frequency calculation, lemmatization, and classification of words ...
13
artículo
Publicado 2023
Enlace

“With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as ...
14
artículo
Publicado 2022
Enlace

Technological advances and the massive use of mobile devices have led to the exponential evolution of mobile applications in the health sector. Blood donation centers frequently suffer blood shortages due to lack of donations, which is why blood donation requests are frequently seen on social networks for blood donors in urgent need of a transfusion of a specific blood group. Mobile applications for blood donation are crucial in the health sector, since it allows donors and blood donation centers to communicate immediately to coordinate with each other, minimizing the time to perform the donation process. The present work was to develop a location-based mobile application for the search of blood donors, with the objective of increasing the number of donors, having a greater population reach, and reducing the time to search for blood donors. The results obtained show a significant increas...
15
artículo
“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identif...
16
artículo
Publicado 2022
Enlace

“This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and fourth, evaluation of the model performance. For processing, a total of 10,322 ““curriculum““ documents related to data science were collected from the web during 2018-2022. The latent dirichlet allocation (LDA) model was used for the analysis and structure of the subjects. After processing, 12 themes were generated, which allowed ranking the most relevant terms to identify the skills of each of the candidates. This work concludes that candidates interested in data science must have skills in the following topics: first, they must be technical, they must have mastery of structured ...
17
artículo
The use of conversational agents (bots) in information systems managed by company’s increases productivity in the development of activities focused on processes such as customer service, healthcare, and presentation. The present work is a systematic literature review that collects articles from 2019 to 2022 in the databases Scopus, Springer, Willey, Indexes-Csic, Taylor & Francis, Pubmed, and Ebsco Host. PRISMA methodology was used to systematize 47 relevant articles. As a result of the analysis, 2/19 very important benefits were obtained, which are: helping to obtain information and facilitating customer service; as for the types of conversational bots, a total of 9 types were found, of which conversational agents and chatbots with artificial intelligence (AI) are the most common; in the case of processes, 3/5 processes that optimize conversational bots were found, where the most prom...
18
artículo
Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset...
19
artículo
Publicado 2023
Enlace

Learning the anatomy of the human skeletal system presents several challenges in understanding the complexity of the human body. One of the most common issues is the absence of effective and accessible learning methods that enable students to gain comprehensive knowledge. Therefore, the use of technologies such as augmented reality (AR) aims to address this issue and facilitate its resolution by enabling students to engage with three-dimensional anatomical models, fostering hands-on, visualization-based learning. The aim of this study is to enhance the learning of human skeletal anatomy through the use of AR technology. The study employed a quantitative approach and a pre-experimental design, in which the experiment was conducted according to the research plan and involved 60 students. Mobile-D was used to develop the mobile application. The findings revealed that 93.3% of participants a...
20
artículo
Publicado 2023
Enlace

Un agente inteligente (AI) utiliza la inteligencia artificial (IA) para dialogar con los usuarios; las incidencias son interrupciones que surgen y que impiden a los usuarios hacer uso de las tecnologías de la información (TI); América Latina tiene un 15. 5% de las respuestas a incidencias de clientes. En Europa, cada año las incidencias de seguridad de TI se han visto incrementado desde 2019 en un 41%, las cuales se clasifican como de gravedad Alta y Muy Alta. El propósito de este estudio fue implementar un AI para mejorar la Gestión de Incidencias (GI), reducir el número de incidencias no resueltos, reducir el tiempo de resolución y aumentar la satisfacción de los usuarios. Para lograr este objetivo, se siguió un enfoque cuantitativo y un diseño preexperimental; se utilizó cuestionarios para el recojo de datos y, a continuación, todos los datos se sometieron a un análisis ...