1
artículo
Publicado 2023
Enlace

Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect patterns of behavior with respect to patients who have been found to have some type of cancer. This work aims to identify and classify breast cancer using deep learning models and convolutional neural networks (CNN) with transfer learning. For the breast cancer detection process, 7803 real images with benign and malignant labels were used, which were provided by BreaKHis on the Kaggle platform. The convolutional basis (parameters) of pre-trained models VGG16, VGG19, Resnet-50 and Inception-V3 were used. The TensorFlow framework, keras and Python libraries were also used to retrain the parameters of t...
2
tesis de maestría
Publicado 2022
Enlace

Esta investigación se presenta con el objetivo o propósito fundamental de evaluar los principales factores que están relacionados al rendimiento académico de los estudiantes del curso de estadística del año académico 2020-I en una universidad de Lima Sur. Se aplicó un diseño correlacional en el que participaron 276 estudiantes del curso de estadística de los ciclos III y VI de la universidad, quienes fueron seleccionados por muestreo aleatorio estratificado con asignación proporcional de acuerdo al turno mañana tarde y noche respectivamente. Se utilizó como técnica la encuesta para el recojo de la información de los factores asociados y como instrumento el cuestionario, para el rendimiento académico se utilizó los registros de las evaluaciones realizadas en el ciclo mencionado. Entre los factores considerados tenemos al factor Institucional, Pedagógico, Cognitivo-intele...
3
tesis de grado
Publicado 2014
Enlace

This thesis aims to conduct analysis and control of shrinkage through statistical tools to diagnose; finding the causes and limits of statistical inventory control oriented reduction of waste produced in a supply chain Retail companies of the city of Trujillo._x000D_ The information is obtained from the database of the company, which uses the SAP EASY ACCESS program where inventory is recorded in inventory shrinkage produced in a respective month, the count is done weekly but monthly accounts, the company Retail the main item in the sale of housewares and home use, so the store is divided into sections called worlds, database records information from January 2011 until September 2014, which will work to obtain the research objective._x000D_ The causes of the decline of the collected data is determined as well as distributed in the respective sections and / or worlds , supported by statis...
4
artículo
Publicado 2022
Enlace

Today, web content such as images, text, speeches, and videos are user-generated, and social networks have become increasingly popular as a means for people to share their ideas and opinions. One of the most popular social media for expressing their feelings towards events that occur is Twitter. The main objective of this study is to classify and analyze the content of the affiliates of the Pension and Funds Administration (AFP) published on Twitter. This study incorporates machine learning techniques for data mining, cleaning, tokenization, exploratory analysis, classification, and sentiment analysis. To apply the study and examine the data, Twitter was used with the hashtag #afp, followed by descriptive and exploratory analysis, including metrics of the tweets. Finally, a content analysis was carried out, including word frequency calculation, lemmatization, and classification of words ...
5
artículo
Publicado 2022
Enlace

Today, web content such as images, text, speeches, and videos are user-generated, and social networks have become increasingly popular as a means for people to share their ideas and opinions. One of the most popular social media for expressing their feelings towards events that occur is Twitter. The main objective of this study is to classify and analyze the content of the affiliates of the Pension and Funds Administration (AFP) published on Twitter. This study incorporates machine learning techniques for data mining, cleaning, tokenization, exploratory analysis, classification, and sentiment analysis. To apply the study and examine the data, Twitter was used with the hashtag #afp, followed by descriptive and exploratory analysis, including metrics of the tweets. Finally, a content analysis was carried out, including word frequency calculation, lemmatization, and classification of words ...
6
artículo
Publicado 2022
Enlace

Abstract: Today, web content such as images, text, speeches, and videos are user-generated, and social networks have become increasingly popular as a means for people to share their ideas and opinions. One of the most popular social media for expressing their feelings towards events that occur is Twitter. The main objective of this study is to classify and analyze the content of the affiliates of the Pension and Funds Administration (AFP) published on Twitter. This study incorporates machine learning techniques for data mining, cleaning, tokenization, exploratory analysis, classification, and sentiment analysis. To apply the study and examine the data, Twitter was used with the hashtag #afp, followed by descriptive and exploratory analysis, including metrics of the tweets. Finally, a content analysis was carried out, including word frequency calculation, lemmatization, and classification...
7
artículo
“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the data...
8
artículo
“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the data...
9
artículo
Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset...
10
artículo
“Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem ““La Ciudad y los perros““ which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.“
11
artículo
Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem "La Ciudad y los perros" which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.
12
artículo
“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identif...
13
artículo
“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identif...
14
artículo
The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identifica...