Text prediction recurrent neural networks using long shortterm memory-dropout
Descripción del Articulo
“Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the L...
| Autores: | , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Privada Norbert Wiener |
| Repositorio: | UWIENER-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/8063 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13053/8063 |
| Nivel de acceso: | acceso abierto |
| Materia: | "Dropout Prediction Recurrent neural network Text Unit short-term memory" http://purl.org/pe-repo/ocde/ford#1.02.00 |
| Sumario: | “Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem ““La Ciudad y los perros““ which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.“ |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).