The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks

Descripción del Articulo

This scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological...

Descripción completa

Detalles Bibliográficos
Autores: Díaz León, J. A., Olarte Escobar, M. A., Jara García, M.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668740
Enlace del recurso:http://hdl.handle.net/10757/668740
Nivel de acceso:acceso embargado
Materia:Flow prediction
Lima metropolitana
Long-term bidirectional recurrent neural network (BRNN)
Precipitation prediction
Temperature prediction
Hydrometeorological variables
Temperature, precipitation, and flow
Bidirectional recurrent neural networks (BRNN)
Metropolitan Lima
LSTM models
Mean square error (MSE)
Root mean square error (RMSE)
Nash Sutcliffe efficiency ratio (NSE)
Average temperatures
Prediction performance
Descripción
Sumario:This scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological conditions in Metropolitan Lima until the year 2050. The BRNN model is formed by a single series of past observations, which means that the model analyzes one variable simultaneously to project the next value in the sequence, and unlike other LSTM models, the bidirectional model can model complex and long-time series of sequences efficiently. The purpose of the model is to divide the neurons of a regular RNN into 2 directions, one of them is for the positive time direction (forward states), and one is for the negative time direction (reverse states). In addition, mean square error (MSE), root mean square error (RMSE), and Nash Sutcliffe efficiency ratio (NSE) were used as error metrics to assess prediction performance. Regarding the results, the prediction of average temperatures tends to increase between the ranges of 0.30–0.90 °C with estimated maximum temperatures up to 27 °C.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).