Aplicación de Modelos de Aprendizaje Automático en la Detección de Fraudes en Transacciones Financieras
Descripción del Articulo
Introducción: la detección de fraude en transacciones financieras se ha convertido en una preocupación crítica en el panorama financiero actual. Las técnicas de aprendizaje automático se han convertido en una herramienta clave para la detección de fraude dada su capacidad para analizar grandes volúm...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2828 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/2828 https://doi.org/10.56294/dm2023109 |
| Nivel de acceso: | acceso abierto |
| Materia: | Detección De Fraude Aprendizaje Automático Redes Neuronales Convolucionales Random Forest Evaluación De Rendimiento https://purl.org/pe-repo/ocde/ford#5.02.04 |
| Sumario: | Introducción: la detección de fraude en transacciones financieras se ha convertido en una preocupación crítica en el panorama financiero actual. Las técnicas de aprendizaje automático se han convertido en una herramienta clave para la detección de fraude dada su capacidad para analizar grandes volúmenes de datos y detectar patrones sutiles. Objetivo: evaluar el desempeño de técnicas de aprendizaje automático como Random Forest y Redes neuronales convolucionales para identificar transacciones fraudulentas en tiempo real. Métodos: se obtuvo un conjunto de datos del mundo real de transacciones financieras de varias instituciones. Se aplicaron técnicas de preprocesamiento de datos que incluyen imputación múltiple y transformación de variables. Se entrenaron y optimizaron modelos como Random Forest, Redes neuronales convolucionales, Naive Bayes y Regresión logística. El rendimiento se evaluó utilizando métricas como la puntuación F1. Resultados: los Random Forest y las Redes neuronales convolucionales lograron una puntuación F1 superior al 95 % en promedio, superando el umbral objetivo. Los Random Forest produjeron la puntuación F1 promedio más alta de 0,956. Se estimó que los modelos detectaban el 45 % de las transacciones fraudulentas con baja variabilidad. Conclusiones: el estudio demostró la eficacia de los modelos de aprendizaje automático, especialmente los Random Forest y las Redes neuronales convolucionales, para una detección precisa del fraude en tiempo real. Su alto desempeño respalda la aplicación de estas técnicas para fortalecer la seguridad financiera. También se discuten futuras direcciones de investigación. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).