Text prediction recurrent neural networks using long shortterm memory-dropout

Descripción del Articulo

Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LS...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Guevara-Ponce, Victor, Ruiz-Alvarado, Daniel, Beltozar-Clemente, Saul, Sierra-Liñan, Fernando, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2830
Enlace del recurso:https://hdl.handle.net/20.500.13067/2830
https://doi.org/10.11591/ijeecs.v29.i3.pp1758-1768
Nivel de acceso:acceso abierto
Materia:Dropout
Prediction
Recurrent neural network
Text
Unit short-term memory
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_399b4b8036dab0696223dff81b2d5fb8
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2830
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorRuiz-Alvarado, DanielBeltozar-Clemente, SaulSierra-Liñan, FernandoZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-11-30T16:15:15Z2023-11-30T16:15:15Z2023https://hdl.handle.net/20.500.13067/2830https://doi.org/10.11591/ijeecs.v29.i3.pp1758-1768Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem "La Ciudad y los perros" which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.application/pdfengIndonesian Journal of Electrical Engineering and Computer Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/DropoutPredictionRecurrent neural networkTextUnit short-term memoryhttps://purl.org/pe-repo/ocde/ford#2.02.04Text prediction recurrent neural networks using long shortterm memory-dropoutinfo:eu-repo/semantics/article29317581768reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL8_2023.pdf8_2023.pdfArtículoapplication/pdf693028http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/1/8_2023.pdf9a424f6eaf61160e059f05aa327d601cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT8_2023.pdf.txt8_2023.pdf.txtExtracted texttext/plain44915http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/3/8_2023.pdf.txt9b711ee79f71bcf2168da4c64ebd15deMD53THUMBNAIL8_2023.pdf.jpg8_2023.pdf.jpgGenerated Thumbnailimage/jpeg6549http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/4/8_2023.pdf.jpg3b9d8e847ace2613b5b71366785ab061MD5420.500.13067/2830oai:repositorio.autonoma.edu.pe:20.500.13067/28302023-12-01 03:00:34.703Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Text prediction recurrent neural networks using long shortterm memory-dropout
title Text prediction recurrent neural networks using long shortterm memory-dropout
spellingShingle Text prediction recurrent neural networks using long shortterm memory-dropout
Iparraguirre-Villanueva, Orlando
Dropout
Prediction
Recurrent neural network
Text
Unit short-term memory
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Text prediction recurrent neural networks using long shortterm memory-dropout
title_full Text prediction recurrent neural networks using long shortterm memory-dropout
title_fullStr Text prediction recurrent neural networks using long shortterm memory-dropout
title_full_unstemmed Text prediction recurrent neural networks using long shortterm memory-dropout
title_sort Text prediction recurrent neural networks using long shortterm memory-dropout
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Ruiz-Alvarado, Daniel
Beltozar-Clemente, Saul
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Guevara-Ponce, Victor
Ruiz-Alvarado, Daniel
Beltozar-Clemente, Saul
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Ruiz-Alvarado, Daniel
Beltozar-Clemente, Saul
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Dropout
Prediction
Recurrent neural network
Text
Unit short-term memory
topic Dropout
Prediction
Recurrent neural network
Text
Unit short-term memory
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem "La Ciudad y los perros" which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-30T16:15:15Z
dc.date.available.none.fl_str_mv 2023-11-30T16:15:15Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2830
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijeecs.v29.i3.pp1758-1768
url https://hdl.handle.net/20.500.13067/2830
https://doi.org/10.11591/ijeecs.v29.i3.pp1758-1768
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 29
dc.source.issue.es_PE.fl_str_mv 3
dc.source.beginpage.es_PE.fl_str_mv 1758
dc.source.endpage.es_PE.fl_str_mv 1768
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/1/8_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/3/8_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2830/4/8_2023.pdf.jpg
bitstream.checksum.fl_str_mv 9a424f6eaf61160e059f05aa327d601c
9243398ff393db1861c890baeaeee5f9
9b711ee79f71bcf2168da4c64ebd15de
3b9d8e847ace2613b5b71366785ab061
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915338073505792
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).