An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education
Descripción del Articulo
“Investing in children's well-being and supporting high-quality pre-school education is a significant component of its promotion (ECE). All children have the right to participate. ECE teachers' thoughts about children's participation were examined to see if they were linked to childre...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Privada Norbert Wiener |
Repositorio: | UWIENER-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/9364 |
Enlace del recurso: | https://hdl.handle.net/20.500.13053/9364 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial Intelligence, Childhood Education, Multimodal Data, Ensemble ML 5.03.00 -- Ciencias de la educación |
id |
UWIE_80d14adc87951ac1f37b9f77e5b88e71 |
---|---|
oai_identifier_str |
oai:repositorio.uwiener.edu.pe:20.500.13053/9364 |
network_acronym_str |
UWIE |
network_name_str |
UWIENER-Institucional |
repository_id_str |
9398 |
dc.title.es_PE.fl_str_mv |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education |
title |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education |
spellingShingle |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education Fuster-Guillén, Doris Artificial Intelligence, Childhood Education, Multimodal Data, Ensemble ML 5.03.00 -- Ciencias de la educación |
title_short |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education |
title_full |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education |
title_fullStr |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education |
title_full_unstemmed |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education |
title_sort |
An Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Education |
author |
Fuster-Guillén, Doris |
author_facet |
Fuster-Guillén, Doris Guadalupe Zevallos, Oscar Gustavo Sánchez Tarrillo, Juan Aguinaga Vasquez, Silvia Josefina Saavedra-López, Miguel A. Hernández, Ronald M. |
author_role |
author |
author2 |
Guadalupe Zevallos, Oscar Gustavo Sánchez Tarrillo, Juan Aguinaga Vasquez, Silvia Josefina Saavedra-López, Miguel A. Hernández, Ronald M. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Fuster-Guillén, Doris Guadalupe Zevallos, Oscar Gustavo Sánchez Tarrillo, Juan Aguinaga Vasquez, Silvia Josefina Saavedra-López, Miguel A. Hernández, Ronald M. |
dc.subject.es_PE.fl_str_mv |
Artificial Intelligence, Childhood Education, Multimodal Data, Ensemble ML |
topic |
Artificial Intelligence, Childhood Education, Multimodal Data, Ensemble ML 5.03.00 -- Ciencias de la educación |
dc.subject.ocde.es_PE.fl_str_mv |
5.03.00 -- Ciencias de la educación |
description |
“Investing in children's well-being and supporting high-quality pre-school education is a significant component of its promotion (ECE). All children have the right to participate. ECE teachers' thoughts about children's participation were examined to see if they were linked to children's perceptions of their participation. On the other hand, current studies focus on a single categorization method with lower overall accuracy. The findings of this study provided the basis for the development of an ensemble machine learning (ML) approach for measuring the participation of children with learning disabilities in educational situations that were specifically developed for them. Visual and auditory data are collected and analyzed to determine whether or not the youngster is engaged during the robot-child interaction in this manner. It is proposed that an ensemble ML technique (Enhanced Deep Neural Network (EDNN), Modified Extreme Gradient Boost Classifier, and Logistic Regression) be used to judge whether or not a youngster is actively engaged in the learning process. Children's participation in ECE courses depends on both the quantitative and qualitative characteristics of the classroom, according to this research. “ |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-18T15:08:32Z |
dc.date.available.none.fl_str_mv |
2023-09-18T15:08:32Z |
dc.date.issued.fl_str_mv |
2023-05-30 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13053/9364 |
dc.identifier.doi.none.fl_str_mv |
10.58346/JOWUA.2023.I1.005 |
url |
https://hdl.handle.net/20.500.13053/9364 |
identifier_str_mv |
10.58346/JOWUA.2023.I1.005 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Innovative Information Science and Technology Research Group |
dc.publisher.country.es_PE.fl_str_mv |
KOR |
dc.source.none.fl_str_mv |
reponame:UWIENER-Institucional instname:Universidad Privada Norbert Wiener instacron:UWIENER |
instname_str |
Universidad Privada Norbert Wiener |
instacron_str |
UWIENER |
institution |
UWIENER |
reponame_str |
UWIENER-Institucional |
collection |
UWIENER-Institucional |
bitstream.url.fl_str_mv |
https://dspace-uwiener.metabuscador.org/bitstreams/ecbc03cf-2bc7-43e8-909d-9190bf123a9b/download https://dspace-uwiener.metabuscador.org/bitstreams/a7fd6cde-9cdc-470c-bdbc-0415ebc6eebd/download https://dspace-uwiener.metabuscador.org/bitstreams/c8954e98-6090-4970-8e8a-63b5d716535d/download https://dspace-uwiener.metabuscador.org/bitstreams/f2517d9c-a2a4-43fe-be35-3832e3bbd4c4/download |
bitstream.checksum.fl_str_mv |
57236e9a6971cdc19e1a84022cf93c4c a0a3edb9ed34f93dd94349adc18a366c 251f794b8506c48a8395076908bdbe77 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Wiener |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1835828736880017408 |
spelling |
Fuster-Guillén, DorisGuadalupe Zevallos, Oscar GustavoSánchez Tarrillo, JuanAguinaga Vasquez, Silvia JosefinaSaavedra-López, Miguel A.Hernández, Ronald M.2023-09-18T15:08:32Z2023-09-18T15:08:32Z2023-05-30https://hdl.handle.net/20.500.13053/936410.58346/JOWUA.2023.I1.005“Investing in children's well-being and supporting high-quality pre-school education is a significant component of its promotion (ECE). All children have the right to participate. ECE teachers' thoughts about children's participation were examined to see if they were linked to children's perceptions of their participation. On the other hand, current studies focus on a single categorization method with lower overall accuracy. The findings of this study provided the basis for the development of an ensemble machine learning (ML) approach for measuring the participation of children with learning disabilities in educational situations that were specifically developed for them. Visual and auditory data are collected and analyzed to determine whether or not the youngster is engaged during the robot-child interaction in this manner. It is proposed that an ensemble ML technique (Enhanced Deep Neural Network (EDNN), Modified Extreme Gradient Boost Classifier, and Logistic Regression) be used to judge whether or not a youngster is actively engaged in the learning process. Children's participation in ECE courses depends on both the quantitative and qualitative characteristics of the classroom, according to this research. “application/pdfengInnovative Information Science and Technology Research GroupKORinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Artificial Intelligence, Childhood Education, Multimodal Data, Ensemble ML5.03.00 -- Ciencias de la educaciónAn Ensemble-based Machine Learning Model for Investigating Children Interaction with Robots in Childhood Educationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationTEXT2023.I1.005.pdf.txt2023.I1.005.pdf.txtExtracted texttext/plain23111https://dspace-uwiener.metabuscador.org/bitstreams/ecbc03cf-2bc7-43e8-909d-9190bf123a9b/download57236e9a6971cdc19e1a84022cf93c4cMD53THUMBNAIL2023.I1.005.pdf.jpg2023.I1.005.pdf.jpgGenerated Thumbnailimage/jpeg10026https://dspace-uwiener.metabuscador.org/bitstreams/a7fd6cde-9cdc-470c-bdbc-0415ebc6eebd/downloada0a3edb9ed34f93dd94349adc18a366cMD54ORIGINAL2023.I1.005.pdf2023.I1.005.pdfapplication/pdf353093https://dspace-uwiener.metabuscador.org/bitstreams/c8954e98-6090-4970-8e8a-63b5d716535d/download251f794b8506c48a8395076908bdbe77MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/f2517d9c-a2a4-43fe-be35-3832e3bbd4c4/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.13053/9364oai:dspace-uwiener.metabuscador.org:20.500.13053/93642024-12-13 12:14:37.099https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.87115 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).