Disease Identification in Crop Plants based on Convolutional Neural Networks
Descripción del Articulo
“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Privada Norbert Wiener |
Repositorio: | UWIENER-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/9421 |
Enlace del recurso: | https://hdl.handle.net/20.500.13053/9421 |
Nivel de acceso: | acceso abierto |
Materia: | "CNN; identification; models; pathogen; plant; classification; machine learning" 1.02.00 -- Informática y Ciencias de la Información |
id |
UWIE_45b0b967f5f9b06f1dceea8f5495aade |
---|---|
oai_identifier_str |
oai:repositorio.uwiener.edu.pe:20.500.13053/9421 |
network_acronym_str |
UWIE |
network_name_str |
UWIENER-Institucional |
repository_id_str |
9398 |
dc.title.es_PE.fl_str_mv |
Disease Identification in Crop Plants based on Convolutional Neural Networks |
title |
Disease Identification in Crop Plants based on Convolutional Neural Networks |
spellingShingle |
Disease Identification in Crop Plants based on Convolutional Neural Networks Iparraguirre-Villanueva, Orlando "CNN; identification; models; pathogen; plant; classification; machine learning" 1.02.00 -- Informática y Ciencias de la Información |
title_short |
Disease Identification in Crop Plants based on Convolutional Neural Networks |
title_full |
Disease Identification in Crop Plants based on Convolutional Neural Networks |
title_fullStr |
Disease Identification in Crop Plants based on Convolutional Neural Networks |
title_full_unstemmed |
Disease Identification in Crop Plants based on Convolutional Neural Networks |
title_sort |
Disease Identification in Crop Plants based on Convolutional Neural Networks |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Torres-Ceclén, Carmen Ruiz-Alvarado, John Castro-Leon, Gloria Roque-Paredes, Ofelia Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Guevara-Ponce, Victor Torres-Ceclén, Carmen Ruiz-Alvarado, John Castro-Leon, Gloria Roque-Paredes, Ofelia Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Torres-Ceclén, Carmen Ruiz-Alvarado, John Castro-Leon, Gloria Roque-Paredes, Ofelia Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
"CNN; identification; models; pathogen; plant; classification; machine learning" |
topic |
"CNN; identification; models; pathogen; plant; classification; machine learning" 1.02.00 -- Informática y Ciencias de la Información |
dc.subject.ocde.es_PE.fl_str_mv |
1.02.00 -- Informática y Ciencias de la Información |
description |
“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets“ |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-21T16:07:18Z |
dc.date.available.none.fl_str_mv |
2023-09-21T16:07:18Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13053/9421 |
url |
https://hdl.handle.net/20.500.13053/9421 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Science and Information Organization |
dc.publisher.country.es_PE.fl_str_mv |
AT |
dc.source.none.fl_str_mv |
reponame:UWIENER-Institucional instname:Universidad Privada Norbert Wiener instacron:UWIENER |
instname_str |
Universidad Privada Norbert Wiener |
instacron_str |
UWIENER |
institution |
UWIENER |
reponame_str |
UWIENER-Institucional |
collection |
UWIENER-Institucional |
bitstream.url.fl_str_mv |
https://dspace-uwiener.metabuscador.org/bitstreams/0badbbc4-191c-4681-bee6-462560fed3c5/download https://dspace-uwiener.metabuscador.org/bitstreams/381dc308-d073-4346-aa19-1746d1f9954a/download https://dspace-uwiener.metabuscador.org/bitstreams/6972c8e8-e2e6-4235-a91e-34088f4fa0c6/download https://dspace-uwiener.metabuscador.org/bitstreams/e30031e1-8b91-4929-95d3-87a580f4989c/download |
bitstream.checksum.fl_str_mv |
772b591a4f0fa098ca1949301436c0e2 78c333dce7426d699200e8c4e6e8994f 8a4605be74aa9ea9d79846c1fba20a33 a090391857cac0fd0de4c7fdc9f7f484 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Wiener |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1835828751041036288 |
spelling |
Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorTorres-Ceclén, CarmenRuiz-Alvarado, JohnCastro-Leon, GloriaRoque-Paredes, OfeliaZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-09-21T16:07:18Z2023-09-21T16:07:18Z2023https://hdl.handle.net/20.500.13053/9421“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets“application/pdfengScience and Information OrganizationATinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"CNN; identification; models; pathogen; plant; classification; machine learning"1.02.00 -- Informática y Ciencias de la InformaciónDisease Identification in Crop Plants based on Convolutional Neural Networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationTEXTPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.txtPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.txtExtracted texttext/plain47321https://dspace-uwiener.metabuscador.org/bitstreams/0badbbc4-191c-4681-bee6-462560fed3c5/download772b591a4f0fa098ca1949301436c0e2MD53THUMBNAILPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.jpgPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.jpgGenerated Thumbnailimage/jpeg14349https://dspace-uwiener.metabuscador.org/bitstreams/381dc308-d073-4346-aa19-1746d1f9954a/download78c333dce7426d699200e8c4e6e8994fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/6972c8e8-e2e6-4235-a91e-34088f4fa0c6/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALPaper_60-Disease_Identification_in_Crop_Plants (1).pdfPaper_60-Disease_Identification_in_Crop_Plants (1).pdfapplication/pdf1322469https://dspace-uwiener.metabuscador.org/bitstreams/e30031e1-8b91-4929-95d3-87a580f4989c/downloada090391857cac0fd0de4c7fdc9f7f484MD5120.500.13053/9421oai:dspace-uwiener.metabuscador.org:20.500.13053/94212024-12-13 14:37:40.996https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.87115 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).