Disease Identification in Crop Plants based on Convolutional Neural Networks

Descripción del Articulo

“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Guevara-Ponce, Victor, Torres-Ceclén, Carmen, Ruiz-Alvarado, John, Castro-Leon, Gloria, Roque-Paredes, Ofelia, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Privada Norbert Wiener
Repositorio:UWIENER-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uwiener.edu.pe:20.500.13053/9421
Enlace del recurso:https://hdl.handle.net/20.500.13053/9421
Nivel de acceso:acceso abierto
Materia:"CNN; identification; models; pathogen; plant; classification; machine learning"
1.02.00 -- Informática y Ciencias de la Información
id UWIE_45b0b967f5f9b06f1dceea8f5495aade
oai_identifier_str oai:repositorio.uwiener.edu.pe:20.500.13053/9421
network_acronym_str UWIE
network_name_str UWIENER-Institucional
repository_id_str 9398
dc.title.es_PE.fl_str_mv Disease Identification in Crop Plants based on Convolutional Neural Networks
title Disease Identification in Crop Plants based on Convolutional Neural Networks
spellingShingle Disease Identification in Crop Plants based on Convolutional Neural Networks
Iparraguirre-Villanueva, Orlando
"CNN; identification; models; pathogen; plant; classification; machine learning"
1.02.00 -- Informática y Ciencias de la Información
title_short Disease Identification in Crop Plants based on Convolutional Neural Networks
title_full Disease Identification in Crop Plants based on Convolutional Neural Networks
title_fullStr Disease Identification in Crop Plants based on Convolutional Neural Networks
title_full_unstemmed Disease Identification in Crop Plants based on Convolutional Neural Networks
title_sort Disease Identification in Crop Plants based on Convolutional Neural Networks
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Torres-Ceclén, Carmen
Ruiz-Alvarado, John
Castro-Leon, Gloria
Roque-Paredes, Ofelia
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Guevara-Ponce, Victor
Torres-Ceclén, Carmen
Ruiz-Alvarado, John
Castro-Leon, Gloria
Roque-Paredes, Ofelia
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Torres-Ceclén, Carmen
Ruiz-Alvarado, John
Castro-Leon, Gloria
Roque-Paredes, Ofelia
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv "CNN; identification; models; pathogen; plant; classification; machine learning"
topic "CNN; identification; models; pathogen; plant; classification; machine learning"
1.02.00 -- Informática y Ciencias de la Información
dc.subject.ocde.es_PE.fl_str_mv 1.02.00 -- Informática y Ciencias de la Información
description “The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets“
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-21T16:07:18Z
dc.date.available.none.fl_str_mv 2023-09-21T16:07:18Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13053/9421
url https://hdl.handle.net/20.500.13053/9421
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Science and Information Organization
dc.publisher.country.es_PE.fl_str_mv AT
dc.source.none.fl_str_mv reponame:UWIENER-Institucional
instname:Universidad Privada Norbert Wiener
instacron:UWIENER
instname_str Universidad Privada Norbert Wiener
instacron_str UWIENER
institution UWIENER
reponame_str UWIENER-Institucional
collection UWIENER-Institucional
bitstream.url.fl_str_mv https://dspace-uwiener.metabuscador.org/bitstreams/0badbbc4-191c-4681-bee6-462560fed3c5/download
https://dspace-uwiener.metabuscador.org/bitstreams/381dc308-d073-4346-aa19-1746d1f9954a/download
https://dspace-uwiener.metabuscador.org/bitstreams/6972c8e8-e2e6-4235-a91e-34088f4fa0c6/download
https://dspace-uwiener.metabuscador.org/bitstreams/e30031e1-8b91-4929-95d3-87a580f4989c/download
bitstream.checksum.fl_str_mv 772b591a4f0fa098ca1949301436c0e2
78c333dce7426d699200e8c4e6e8994f
8a4605be74aa9ea9d79846c1fba20a33
a090391857cac0fd0de4c7fdc9f7f484
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Wiener
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1835828751041036288
spelling Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorTorres-Ceclén, CarmenRuiz-Alvarado, JohnCastro-Leon, GloriaRoque-Paredes, OfeliaZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-09-21T16:07:18Z2023-09-21T16:07:18Z2023https://hdl.handle.net/20.500.13053/9421“The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets“application/pdfengScience and Information OrganizationATinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"CNN; identification; models; pathogen; plant; classification; machine learning"1.02.00 -- Informática y Ciencias de la InformaciónDisease Identification in Crop Plants based on Convolutional Neural Networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationTEXTPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.txtPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.txtExtracted texttext/plain47321https://dspace-uwiener.metabuscador.org/bitstreams/0badbbc4-191c-4681-bee6-462560fed3c5/download772b591a4f0fa098ca1949301436c0e2MD53THUMBNAILPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.jpgPaper_60-Disease_Identification_in_Crop_Plants (1).pdf.jpgGenerated Thumbnailimage/jpeg14349https://dspace-uwiener.metabuscador.org/bitstreams/381dc308-d073-4346-aa19-1746d1f9954a/download78c333dce7426d699200e8c4e6e8994fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/6972c8e8-e2e6-4235-a91e-34088f4fa0c6/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALPaper_60-Disease_Identification_in_Crop_Plants (1).pdfPaper_60-Disease_Identification_in_Crop_Plants (1).pdfapplication/pdf1322469https://dspace-uwiener.metabuscador.org/bitstreams/e30031e1-8b91-4929-95d3-87a580f4989c/downloada090391857cac0fd0de4c7fdc9f7f484MD5120.500.13053/9421oai:dspace-uwiener.metabuscador.org:20.500.13053/94212024-12-13 14:37:40.996https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.87115
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).