Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
Descripción del Articulo
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
| Autores: | , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2019 |
| Institución: | Universidad Privada del Norte |
| Repositorio: | UPN-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.upn.edu.pe:11537/26899 |
| Enlace del recurso: | https://hdl.handle.net/11537/26899 https://doi.org/10.1007/978-3-030-33547-2_17 |
| Nivel de acceso: | acceso abierto |
| Materia: | Frutas Clasificación Tecnología alimentaria https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
UUPN_ac6c6e1857c208d988ebfbd5c664db84 |
|---|---|
| oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/26899 |
| network_acronym_str |
UUPN |
| network_name_str |
UPN-Institucional |
| repository_id_str |
1873 |
| dc.title.es_PE.fl_str_mv |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits |
| title |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits |
| spellingShingle |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits De la Torre, Miguel Frutas Clasificación Tecnología alimentaria https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits |
| title_full |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits |
| title_fullStr |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits |
| title_full_unstemmed |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits |
| title_sort |
Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits |
| author |
De la Torre, Miguel |
| author_facet |
De la Torre, Miguel Avila-George, Himer Oblitas, Jimy Castro, Wilson |
| author_role |
author |
| author2 |
Avila-George, Himer Oblitas, Jimy Castro, Wilson |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
De la Torre, Miguel Avila-George, Himer Oblitas, Jimy Castro, Wilson |
| dc.subject.es_PE.fl_str_mv |
Frutas Clasificación Tecnología alimentaria |
| topic |
Frutas Clasificación Tecnología alimentaria https://purl.org/pe-repo/ocde/ford#2.11.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado. |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2021-06-21T05:22:30Z |
| dc.date.available.none.fl_str_mv |
2021-06-21T05:22:30Z |
| dc.date.issued.fl_str_mv |
2019-10-17 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.citation.es_PE.fl_str_mv |
De la Torre, M. ...[et al]. (2020). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Advances in Intelligent Systems and Computing, 1071, 219-233. https://doi.org/10.1007/978-3-030-33547-2_17 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/26899 |
| dc.identifier.journal.es_PE.fl_str_mv |
Advances in Intelligent Systems and Computing |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-33547-2_17 |
| identifier_str_mv |
De la Torre, M. ...[et al]. (2020). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Advances in Intelligent Systems and Computing, 1071, 219-233. https://doi.org/10.1007/978-3-030-33547-2_17 Advances in Intelligent Systems and Computing |
| url |
https://hdl.handle.net/11537/26899 https://doi.org/10.1007/978-3-030-33547-2_17 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Springer |
| dc.publisher.country.es_PE.fl_str_mv |
CH |
| dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
| dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
| instname_str |
Universidad Privada del Norte |
| instacron_str |
UPN |
| institution |
UPN |
| reponame_str |
UPN-Institucional |
| collection |
UPN-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/26899/1/license_rdf https://repositorio.upn.edu.pe/bitstream/11537/26899/2/license.txt |
| bitstream.checksum.fl_str_mv |
80294ba9ff4c5b4f07812ee200fbc42f 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional UPN |
| repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
| _version_ |
1752944323561783296 |
| spelling |
De la Torre, MiguelAvila-George, HimerOblitas, JimyCastro, Wilson2021-06-21T05:22:30Z2021-06-21T05:22:30Z2019-10-17De la Torre, M. ...[et al]. (2020). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Advances in Intelligent Systems and Computing, 1071, 219-233. https://doi.org/10.1007/978-3-030-33547-2_17https://hdl.handle.net/11537/26899Advances in Intelligent Systems and Computinghttps://doi.org/10.1007/978-3-030-33547-2_17El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.ABSTRACT The use of machine learning techniques to automate the sorting of Cape gooseberry fruits according to their visual ripeness has been reported to provide accurate classification results. Classifiers like artificial neural networks, support vector machines, decision trees, and nearest neighbors are commonly employed to discriminate fruit samples represented in different color spaces (e.g., RGB, HSV, and L*a*b*). Although these feature spaces are equivalent up to a transformation, some of them facilitate classification. In a previous work, authors showed that combining the three-color spaces through principal component analysis enhances classification performance at expenses of increased computational complexity. In this paper, two combination and two selection approaches are explored to find the best characteristics among the combination of the different color spaces (9 features in total). Experimental results reveal that selection and combination of color channels allow classifiers to reach similar levels of accuracy, but combination methods require increased computational complexity.Cajamarcaapplication/pdfengSpringerCHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNFrutasClasificaciónTecnología alimentariahttps://purl.org/pe-repo/ocde/ford#2.11.04Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruitsinfo:eu-repo/semantics/conferenceObjectCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26899/1/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26899/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5211537/26899oai:repositorio.upn.edu.pe:11537/268992021-06-21 00:22:35.732Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).