Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits

Descripción del Articulo

El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Detalles Bibliográficos
Autores: De la Torre, Miguel, Avila-George, Himer, Oblitas, Jimy, Castro, Wilson
Formato: objeto de conferencia
Fecha de Publicación:2019
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/26899
Enlace del recurso:https://hdl.handle.net/11537/26899
https://doi.org/10.1007/978-3-030-33547-2_17
Nivel de acceso:acceso abierto
Materia:Frutas
Clasificación
Tecnología alimentaria
https://purl.org/pe-repo/ocde/ford#2.11.04
id UUPN_ac6c6e1857c208d988ebfbd5c664db84
oai_identifier_str oai:repositorio.upn.edu.pe:11537/26899
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
title Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
spellingShingle Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
De la Torre, Miguel
Frutas
Clasificación
Tecnología alimentaria
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
title_full Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
title_fullStr Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
title_full_unstemmed Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
title_sort Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits
author De la Torre, Miguel
author_facet De la Torre, Miguel
Avila-George, Himer
Oblitas, Jimy
Castro, Wilson
author_role author
author2 Avila-George, Himer
Oblitas, Jimy
Castro, Wilson
author2_role author
author
author
dc.contributor.author.fl_str_mv De la Torre, Miguel
Avila-George, Himer
Oblitas, Jimy
Castro, Wilson
dc.subject.es_PE.fl_str_mv Frutas
Clasificación
Tecnología alimentaria
topic Frutas
Clasificación
Tecnología alimentaria
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-06-21T05:22:30Z
dc.date.available.none.fl_str_mv 2021-06-21T05:22:30Z
dc.date.issued.fl_str_mv 2019-10-17
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv De la Torre, M. ...[et al]. (2020). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Advances in Intelligent Systems and Computing, 1071, 219-233. https://doi.org/10.1007/978-3-030-33547-2_17
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/26899
dc.identifier.journal.es_PE.fl_str_mv Advances in Intelligent Systems and Computing
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-33547-2_17
identifier_str_mv De la Torre, M. ...[et al]. (2020). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Advances in Intelligent Systems and Computing, 1071, 219-233. https://doi.org/10.1007/978-3-030-33547-2_17
Advances in Intelligent Systems and Computing
url https://hdl.handle.net/11537/26899
https://doi.org/10.1007/978-3-030-33547-2_17
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Springer
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/26899/1/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/26899/2/license.txt
bitstream.checksum.fl_str_mv 80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944323561783296
spelling De la Torre, MiguelAvila-George, HimerOblitas, JimyCastro, Wilson2021-06-21T05:22:30Z2021-06-21T05:22:30Z2019-10-17De la Torre, M. ...[et al]. (2020). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Advances in Intelligent Systems and Computing, 1071, 219-233. https://doi.org/10.1007/978-3-030-33547-2_17https://hdl.handle.net/11537/26899Advances in Intelligent Systems and Computinghttps://doi.org/10.1007/978-3-030-33547-2_17El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.ABSTRACT The use of machine learning techniques to automate the sorting of Cape gooseberry fruits according to their visual ripeness has been reported to provide accurate classification results. Classifiers like artificial neural networks, support vector machines, decision trees, and nearest neighbors are commonly employed to discriminate fruit samples represented in different color spaces (e.g., RGB, HSV, and L*a*b*). Although these feature spaces are equivalent up to a transformation, some of them facilitate classification. In a previous work, authors showed that combining the three-color spaces through principal component analysis enhances classification performance at expenses of increased computational complexity. In this paper, two combination and two selection approaches are explored to find the best characteristics among the combination of the different color spaces (9 features in total). Experimental results reveal that selection and combination of color channels allow classifiers to reach similar levels of accuracy, but combination methods require increased computational complexity.Cajamarcaapplication/pdfengSpringerCHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNFrutasClasificaciónTecnología alimentariahttps://purl.org/pe-repo/ocde/ford#2.11.04Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruitsinfo:eu-repo/semantics/conferenceObjectCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26899/1/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26899/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5211537/26899oai:repositorio.upn.edu.pe:11537/268992021-06-21 00:22:35.732Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).