Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients

Descripción del Articulo

ABSTRACT There are several varieties of respiratory diseases which mainly affect children between 0 and 5 years of age, not having a complete report of the behavior of each of these. This research seeks to conduct a study of the behavior of patterns in respiratory diseases of children in Peru throug...

Descripción completa

Detalles Bibliográficos
Autores: Cabanillas-Carbonell, Michael, Verdecia-Peña, Randy, Herrera Salazar, José Luis, Medina-Rafaile, Esteban, Casazola-Cruz, Oswaldo
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/28459
Enlace del recurso:https://hdl.handle.net/11537/28459
https://doi.org/10.14569/IJACSA.2021.0120749
Nivel de acceso:acceso abierto
Materia:Minería de datos
Enfermedades respiratorias
Niños
https://purl.org/pe-repo/ocde/ford#2.02.04
id UUPN_376825d0f86363dcb9e6918407a624b6
oai_identifier_str oai:repositorio.upn.edu.pe:11537/28459
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
title Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
spellingShingle Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
Cabanillas-Carbonell, Michael
Minería de datos
Enfermedades respiratorias
Niños
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
title_full Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
title_fullStr Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
title_full_unstemmed Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
title_sort Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients
author Cabanillas-Carbonell, Michael
author_facet Cabanillas-Carbonell, Michael
Verdecia-Peña, Randy
Herrera Salazar, José Luis
Medina-Rafaile, Esteban
Casazola-Cruz, Oswaldo
author_role author
author2 Verdecia-Peña, Randy
Herrera Salazar, José Luis
Medina-Rafaile, Esteban
Casazola-Cruz, Oswaldo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Cabanillas-Carbonell, Michael
Verdecia-Peña, Randy
Herrera Salazar, José Luis
Medina-Rafaile, Esteban
Casazola-Cruz, Oswaldo
dc.subject.es_PE.fl_str_mv Minería de datos
Enfermedades respiratorias
Niños
topic Minería de datos
Enfermedades respiratorias
Niños
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description ABSTRACT There are several varieties of respiratory diseases which mainly affect children between 0 and 5 years of age, not having a complete report of the behavior of each of these. This research seeks to conduct a study of the behavior of patterns in respiratory diseases of children in Peru through data mining, using data generated by the health sector, organizations and research between the years 2015 to 2019. This process was given by means of the K-Means clustering algorithm which allowed performing an analysis of this data identifying the patterns in a total of 10,000 Peruvian clinical records between the years mentioned, generating different behaviors. Through the grouping obtained in the clusters, it was obtained as a result that most of the cases in all the ages studied, they presented diseases with codes between the range of 000 and 060 approximately. This research was carried out in order to help health centers in Peru for further study, documentation and due decision-making, waiting for optimal prevention strategies regarding respiratory diseases.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-17T21:26:47Z
dc.date.available.none.fl_str_mv 2021-11-17T21:26:47Z
dc.date.issued.fl_str_mv 2021-08-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Cabanillas, M., ...[et al.]. (2021). Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients. International Journal of Advanced Computer Science and Applications (IJACSA), 12(7), 428-436. https://doi.org/10.14569/IJACSA.2021.0120749
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/28459
dc.identifier.journal.es_PE.fl_str_mv International Journal of Advanced Computer Science and Applications (IJACSA)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2021.0120749
identifier_str_mv Cabanillas, M., ...[et al.]. (2021). Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients. International Journal of Advanced Computer Science and Applications (IJACSA), 12(7), 428-436. https://doi.org/10.14569/IJACSA.2021.0120749
International Journal of Advanced Computer Science and Applications (IJACSA)
url https://hdl.handle.net/11537/28459
https://doi.org/10.14569/IJACSA.2021.0120749
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv SAI
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/28459/1/Data%20Mining%20to%20Determine%20Behavioral%20Patterns%20in%20Respiratory%20Disease%20in%20Pediatric%20Patients.pdf
https://repositorio.upn.edu.pe/bitstream/11537/28459/2/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/28459/3/license.txt
https://repositorio.upn.edu.pe/bitstream/11537/28459/4/Data%20Mining%20to%20Determine%20Behavioral%20Patterns%20in%20Respiratory%20Disease%20in%20Pediatric%20Patients.pdf.txt
https://repositorio.upn.edu.pe/bitstream/11537/28459/5/Data%20Mining%20to%20Determine%20Behavioral%20Patterns%20in%20Respiratory%20Disease%20in%20Pediatric%20Patients.pdf.jpg
bitstream.checksum.fl_str_mv 46ac95a4ff7a5503dd23fc16ec7e108d
80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
75557ad66be3f3040e317bf2cfb16106
3fe82d398b5dd74fe555e2f79f528e34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944255304728576
spelling Cabanillas-Carbonell, MichaelVerdecia-Peña, RandyHerrera Salazar, José LuisMedina-Rafaile, EstebanCasazola-Cruz, Oswaldo2021-11-17T21:26:47Z2021-11-17T21:26:47Z2021-08-01Cabanillas, M., ...[et al.]. (2021). Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients. International Journal of Advanced Computer Science and Applications (IJACSA), 12(7), 428-436. https://doi.org/10.14569/IJACSA.2021.0120749https://hdl.handle.net/11537/28459International Journal of Advanced Computer Science and Applications (IJACSA)https://doi.org/10.14569/IJACSA.2021.0120749ABSTRACT There are several varieties of respiratory diseases which mainly affect children between 0 and 5 years of age, not having a complete report of the behavior of each of these. This research seeks to conduct a study of the behavior of patterns in respiratory diseases of children in Peru through data mining, using data generated by the health sector, organizations and research between the years 2015 to 2019. This process was given by means of the K-Means clustering algorithm which allowed performing an analysis of this data identifying the patterns in a total of 10,000 Peruvian clinical records between the years mentioned, generating different behaviors. Through the grouping obtained in the clusters, it was obtained as a result that most of the cases in all the ages studied, they presented diseases with codes between the range of 000 and 060 approximately. This research was carried out in order to help health centers in Peru for further study, documentation and due decision-making, waiting for optimal prevention strategies regarding respiratory diseases.Revisión por paresLos Olivosapplication/pdfengSAIGBinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNMinería de datosEnfermedades respiratoriasNiñoshttps://purl.org/pe-repo/ocde/ford#2.02.04Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patientsinfo:eu-repo/semantics/articleORIGINALData Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients.pdfData Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients.pdfapplication/pdf501636https://repositorio.upn.edu.pe/bitstream/11537/28459/1/Data%20Mining%20to%20Determine%20Behavioral%20Patterns%20in%20Respiratory%20Disease%20in%20Pediatric%20Patients.pdf46ac95a4ff7a5503dd23fc16ec7e108dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/28459/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/28459/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTData Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients.pdf.txtData Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients.pdf.txtExtracted texttext/plain33808https://repositorio.upn.edu.pe/bitstream/11537/28459/4/Data%20Mining%20to%20Determine%20Behavioral%20Patterns%20in%20Respiratory%20Disease%20in%20Pediatric%20Patients.pdf.txt75557ad66be3f3040e317bf2cfb16106MD54THUMBNAILData Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients.pdf.jpgData Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients.pdf.jpgGenerated Thumbnailimage/jpeg5129https://repositorio.upn.edu.pe/bitstream/11537/28459/5/Data%20Mining%20to%20Determine%20Behavioral%20Patterns%20in%20Respiratory%20Disease%20in%20Pediatric%20Patients.pdf.jpg3fe82d398b5dd74fe555e2f79f528e34MD5511537/28459oai:repositorio.upn.edu.pe:11537/284592021-11-17 22:09:46.393Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).