Data Mining to Determine Behavioral Patterns in Respiratory Disease in Pediatric Patients

Descripción del Articulo

ABSTRACT There are several varieties of respiratory diseases which mainly affect children between 0 and 5 years of age, not having a complete report of the behavior of each of these. This research seeks to conduct a study of the behavior of patterns in respiratory diseases of children in Peru throug...

Descripción completa

Detalles Bibliográficos
Autores: Cabanillas-Carbonell, Michael, Verdecia-Peña, Randy, Herrera Salazar, José Luis, Medina-Rafaile, Esteban, Casazola-Cruz, Oswaldo
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/28459
Enlace del recurso:https://hdl.handle.net/11537/28459
https://doi.org/10.14569/IJACSA.2021.0120749
Nivel de acceso:acceso abierto
Materia:Minería de datos
Enfermedades respiratorias
Niños
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:ABSTRACT There are several varieties of respiratory diseases which mainly affect children between 0 and 5 years of age, not having a complete report of the behavior of each of these. This research seeks to conduct a study of the behavior of patterns in respiratory diseases of children in Peru through data mining, using data generated by the health sector, organizations and research between the years 2015 to 2019. This process was given by means of the K-Means clustering algorithm which allowed performing an analysis of this data identifying the patterns in a total of 10,000 Peruvian clinical records between the years mentioned, generating different behaviors. Through the grouping obtained in the clusters, it was obtained as a result that most of the cases in all the ages studied, they presented diseases with codes between the range of 000 and 060 approximately. This research was carried out in order to help health centers in Peru for further study, documentation and due decision-making, waiting for optimal prevention strategies regarding respiratory diseases.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).