Disease identification in crop plants based on convolutional neural networks

Descripción del Articulo

The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven...

Descripción completa

Detalles Bibliográficos
Autores: Ruíz Alvarado, John Fernando, Iparraguirre-Villanueva, Orlando, Guevara-Ponce, Victor, Torres-Ceclén, Carmen, Castro-Leon, Gloria, Roque-Paredes, Ofelia, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7021
Enlace del recurso:https://hdl.handle.net/20.500.12867/7021
https://doi.org/10.14569/IJACSA.2023.0140360
Nivel de acceso:acceso abierto
Materia:Artificial neural networks
Plant diseases
Machine learning
Agriculture
https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
id UTPD_5d7a8c785c61e919fccb74d9005c4387
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/7021
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Disease identification in crop plants based on convolutional neural networks
title Disease identification in crop plants based on convolutional neural networks
spellingShingle Disease identification in crop plants based on convolutional neural networks
Ruíz Alvarado, John Fernando
Artificial neural networks
Plant diseases
Machine learning
Agriculture
https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
title_short Disease identification in crop plants based on convolutional neural networks
title_full Disease identification in crop plants based on convolutional neural networks
title_fullStr Disease identification in crop plants based on convolutional neural networks
title_full_unstemmed Disease identification in crop plants based on convolutional neural networks
title_sort Disease identification in crop plants based on convolutional neural networks
author Ruíz Alvarado, John Fernando
author_facet Ruíz Alvarado, John Fernando
Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Torres-Ceclén, Carmen
Castro-Leon, Gloria
Roque-Paredes, Ofelia
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Torres-Ceclén, Carmen
Castro-Leon, Gloria
Roque-Paredes, Ofelia
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ruíz Alvarado, John Fernando
Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Torres-Ceclén, Carmen
Castro-Leon, Gloria
Roque-Paredes, Ofelia
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Artificial neural networks
Plant diseases
Machine learning
Agriculture
topic Artificial neural networks
Plant diseases
Machine learning
Agriculture
https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
description The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-26T18:55:53Z
dc.date.available.none.fl_str_mv 2023-05-26T18:55:53Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2156-5570
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/7021
dc.identifier.journal.es_PE.fl_str_mv International Journal of Advanced Computer Science and Applications
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2023.0140360
identifier_str_mv 2156-5570
International Journal of Advanced Computer Science and Applications
url https://hdl.handle.net/20.500.12867/7021
https://doi.org/10.14569/IJACSA.2023.0140360
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv International Journal of Advanced Computer Science and Applications;vol. 14, n° 3
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv The Science and Information Organization
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/1/J.Ruiz_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/3/J.Ruiz_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/4/J.Ruiz_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv a090391857cac0fd0de4c7fdc9f7f484
8a4605be74aa9ea9d79846c1fba20a33
772b591a4f0fa098ca1949301436c0e2
8e72f41019336999da43d667f09f0ca8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984862378786816
spelling Ruíz Alvarado, John FernandoIparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorTorres-Ceclén, CarmenCastro-Leon, GloriaRoque-Paredes, OfeliaZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-05-26T18:55:53Z2023-05-26T18:55:53Z20232156-5570https://hdl.handle.net/20.500.12867/7021International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2023.0140360The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets.Campus Chimboteapplication/pdfengThe Science and Information OrganizationGBInternational Journal of Advanced Computer Science and Applications;vol. 14, n° 3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial neural networksPlant diseasesMachine learningAgriculturehttps://purl.org/pe-repo/ocde/ford#1.02.00https://purl.org/pe-repo/ocde/ford#4.01.01Disease identification in crop plants based on convolutional neural networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Ruiz_Articulo_2023.pdfJ.Ruiz_Articulo_2023.pdfapplication/pdf1322469http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/1/J.Ruiz_Articulo_2023.pdfa090391857cac0fd0de4c7fdc9f7f484MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Ruiz_Articulo_2023.pdf.txtJ.Ruiz_Articulo_2023.pdf.txtExtracted texttext/plain47321http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/3/J.Ruiz_Articulo_2023.pdf.txt772b591a4f0fa098ca1949301436c0e2MD53THUMBNAILJ.Ruiz_Articulo_2023.pdf.jpgJ.Ruiz_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg25339http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/4/J.Ruiz_Articulo_2023.pdf.jpg8e72f41019336999da43d667f09f0ca8MD5420.500.12867/7021oai:repositorio.utp.edu.pe:20.500.12867/70212023-05-26 16:34:20.678Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).