Disease identification in crop plants based on convolutional neural networks
Descripción del Articulo
The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/7021 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/7021 https://doi.org/10.14569/IJACSA.2023.0140360 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial neural networks Plant diseases Machine learning Agriculture https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
id |
UTPD_5d7a8c785c61e919fccb74d9005c4387 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/7021 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Disease identification in crop plants based on convolutional neural networks |
title |
Disease identification in crop plants based on convolutional neural networks |
spellingShingle |
Disease identification in crop plants based on convolutional neural networks Ruíz Alvarado, John Fernando Artificial neural networks Plant diseases Machine learning Agriculture https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
title_short |
Disease identification in crop plants based on convolutional neural networks |
title_full |
Disease identification in crop plants based on convolutional neural networks |
title_fullStr |
Disease identification in crop plants based on convolutional neural networks |
title_full_unstemmed |
Disease identification in crop plants based on convolutional neural networks |
title_sort |
Disease identification in crop plants based on convolutional neural networks |
author |
Ruíz Alvarado, John Fernando |
author_facet |
Ruíz Alvarado, John Fernando Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Torres-Ceclén, Carmen Castro-Leon, Gloria Roque-Paredes, Ofelia Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Torres-Ceclén, Carmen Castro-Leon, Gloria Roque-Paredes, Ofelia Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Ruíz Alvarado, John Fernando Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Torres-Ceclén, Carmen Castro-Leon, Gloria Roque-Paredes, Ofelia Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
Artificial neural networks Plant diseases Machine learning Agriculture |
topic |
Artificial neural networks Plant diseases Machine learning Agriculture https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
description |
The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-26T18:55:53Z |
dc.date.available.none.fl_str_mv |
2023-05-26T18:55:53Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2156-5570 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/7021 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Advanced Computer Science and Applications |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14569/IJACSA.2023.0140360 |
identifier_str_mv |
2156-5570 International Journal of Advanced Computer Science and Applications |
url |
https://hdl.handle.net/20.500.12867/7021 https://doi.org/10.14569/IJACSA.2023.0140360 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
International Journal of Advanced Computer Science and Applications;vol. 14, n° 3 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
The Science and Information Organization |
dc.publisher.country.es_PE.fl_str_mv |
GB |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/1/J.Ruiz_Articulo_2023.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/3/J.Ruiz_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/4/J.Ruiz_Articulo_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
a090391857cac0fd0de4c7fdc9f7f484 8a4605be74aa9ea9d79846c1fba20a33 772b591a4f0fa098ca1949301436c0e2 8e72f41019336999da43d667f09f0ca8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984862378786816 |
spelling |
Ruíz Alvarado, John FernandoIparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorTorres-Ceclén, CarmenCastro-Leon, GloriaRoque-Paredes, OfeliaZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-05-26T18:55:53Z2023-05-26T18:55:53Z20232156-5570https://hdl.handle.net/20.500.12867/7021International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2023.0140360The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets.Campus Chimboteapplication/pdfengThe Science and Information OrganizationGBInternational Journal of Advanced Computer Science and Applications;vol. 14, n° 3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial neural networksPlant diseasesMachine learningAgriculturehttps://purl.org/pe-repo/ocde/ford#1.02.00https://purl.org/pe-repo/ocde/ford#4.01.01Disease identification in crop plants based on convolutional neural networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Ruiz_Articulo_2023.pdfJ.Ruiz_Articulo_2023.pdfapplication/pdf1322469http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/1/J.Ruiz_Articulo_2023.pdfa090391857cac0fd0de4c7fdc9f7f484MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Ruiz_Articulo_2023.pdf.txtJ.Ruiz_Articulo_2023.pdf.txtExtracted texttext/plain47321http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/3/J.Ruiz_Articulo_2023.pdf.txt772b591a4f0fa098ca1949301436c0e2MD53THUMBNAILJ.Ruiz_Articulo_2023.pdf.jpgJ.Ruiz_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg25339http://repositorio.utp.edu.pe/bitstream/20.500.12867/7021/4/J.Ruiz_Articulo_2023.pdf.jpg8e72f41019336999da43d667f09f0ca8MD5420.500.12867/7021oai:repositorio.utp.edu.pe:20.500.12867/70212023-05-26 16:34:20.678Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.754011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).