Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
Descripción del Articulo
The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5627 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/5627 http://doi.org/10.14569/IJACSA.2021.0121249 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning Teacher performance Predictive analytics https://purl.org/pe-repo/ocde/ford#5.03.01 https://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
UTPD_3cfca01e2871580343526c53b16647f9 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5627 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance |
| title |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance |
| spellingShingle |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance Leva Apaza, Antenor Machine learning Teacher performance Predictive analytics https://purl.org/pe-repo/ocde/ford#5.03.01 https://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance |
| title_full |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance |
| title_fullStr |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance |
| title_full_unstemmed |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance |
| title_sort |
Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance |
| author |
Leva Apaza, Antenor |
| author_facet |
Leva Apaza, Antenor Chamorro-Atalaya, Omar Anton-De los Santos, Marco Anton-De los Santos, Juan Chávez-Herrera, Carlos Torres-Quiroz, Almintor Tasayco-Jala, Abel Peralta-Eugenio8, Gutember |
| author_role |
author |
| author2 |
Chamorro-Atalaya, Omar Anton-De los Santos, Marco Anton-De los Santos, Juan Chávez-Herrera, Carlos Torres-Quiroz, Almintor Tasayco-Jala, Abel Peralta-Eugenio8, Gutember |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Leva Apaza, Antenor Chamorro-Atalaya, Omar Anton-De los Santos, Marco Anton-De los Santos, Juan Chávez-Herrera, Carlos Torres-Quiroz, Almintor Tasayco-Jala, Abel Peralta-Eugenio8, Gutember |
| dc.subject.es_PE.fl_str_mv |
Machine learning Teacher performance Predictive analytics |
| topic |
Machine learning Teacher performance Predictive analytics https://purl.org/pe-repo/ocde/ford#5.03.01 https://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.03.01 https://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2021a software, identified an Accuracy of 81.3%, for the Ensemble Bagged Trees algorithm. When performing the validation of the collected data, and proceeding with the obtaining of the predictive model, for the 4 classes (satisfaction levels), total precision values of 82.21%, Sensitivity of 73.40%, Specificity of 91.02% and of 90.63% Accuracy. In turn, the highest level of the area under the curve (AUC) by means of the Receiver operating characteristic (ROC) is 0.93, thus considering a sensitivity of the predictive model of 93%. The validation of these results will allow the directors of the higher institution to have a database, to be used in the process of improving the quality of the educational service in relation to teaching performance. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-07-15T15:26:39Z |
| dc.date.available.none.fl_str_mv |
2022-07-15T15:26:39Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2156-5570 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5627 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Advanced Computer Science and Applications |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.14569/IJACSA.2021.0121249 |
| identifier_str_mv |
2156-5570 International Journal of Advanced Computer Science and Applications |
| url |
https://hdl.handle.net/20.500.12867/5627 http://doi.org/10.14569/IJACSA.2021.0121249 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
International Journal of Advanced Computer Science and Applications;vol. 12, n° 12, 367 - 373 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Science and Information Organization |
| dc.publisher.country.es_PE.fl_str_mv |
GB |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/1/A.Leva_IJACSA_Articulo_eng_2021.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/3/A.Leva_IJACSA_Articulo_eng_2021.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/4/A.Leva_IJACSA_Articulo_eng_2021.pdf.jpg |
| bitstream.checksum.fl_str_mv |
b8016d6aa42d0f21bdf36bb4c27af590 8a4605be74aa9ea9d79846c1fba20a33 257cfedc28a1a129dd60fd4f9f47e5ff 625dbc9c3f93301561843e6cbbc1c234 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984918161981440 |
| spelling |
Leva Apaza, AntenorChamorro-Atalaya, OmarAnton-De los Santos, MarcoAnton-De los Santos, JuanChávez-Herrera, CarlosTorres-Quiroz, AlmintorTasayco-Jala, AbelPeralta-Eugenio8, Gutember2022-07-15T15:26:39Z2022-07-15T15:26:39Z20222156-5570https://hdl.handle.net/20.500.12867/5627International Journal of Advanced Computer Science and Applicationshttp://doi.org/10.14569/IJACSA.2021.0121249The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2021a software, identified an Accuracy of 81.3%, for the Ensemble Bagged Trees algorithm. When performing the validation of the collected data, and proceeding with the obtaining of the predictive model, for the 4 classes (satisfaction levels), total precision values of 82.21%, Sensitivity of 73.40%, Specificity of 91.02% and of 90.63% Accuracy. In turn, the highest level of the area under the curve (AUC) by means of the Receiver operating characteristic (ROC) is 0.93, thus considering a sensitivity of the predictive model of 93%. The validation of these results will allow the directors of the higher institution to have a database, to be used in the process of improving the quality of the educational service in relation to teaching performance.Campus Lima Norteapplication/pdfengScience and Information OrganizationGBInternational Journal of Advanced Computer Science and Applications;vol. 12, n° 12, 367 - 373info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningTeacher performancePredictive analyticshttps://purl.org/pe-repo/ocde/ford#5.03.01https://purl.org/pe-repo/ocde/ford#2.02.03Machine learning model through ensemble bagged trees in predictive analysis of university teaching performanceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALA.Leva_IJACSA_Articulo_eng_2021.pdfA.Leva_IJACSA_Articulo_eng_2021.pdfapplication/pdf270169http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/1/A.Leva_IJACSA_Articulo_eng_2021.pdfb8016d6aa42d0f21bdf36bb4c27af590MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA.Leva_IJACSA_Articulo_eng_2021.pdf.txtA.Leva_IJACSA_Articulo_eng_2021.pdf.txtExtracted texttext/plain30584http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/3/A.Leva_IJACSA_Articulo_eng_2021.pdf.txt257cfedc28a1a129dd60fd4f9f47e5ffMD53THUMBNAILA.Leva_IJACSA_Articulo_eng_2021.pdf.jpgA.Leva_IJACSA_Articulo_eng_2021.pdf.jpgGenerated Thumbnailimage/jpeg24163http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/4/A.Leva_IJACSA_Articulo_eng_2021.pdf.jpg625dbc9c3f93301561843e6cbbc1c234MD5420.500.12867/5627oai:repositorio.utp.edu.pe:20.500.12867/56272022-07-15 11:03:48.837Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).