Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance

Descripción del Articulo

The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2...

Descripción completa

Detalles Bibliográficos
Autores: Leva Apaza, Antenor, Chamorro-Atalaya, Omar, Anton-De los Santos, Marco, Anton-De los Santos, Juan, Chávez-Herrera, Carlos, Torres-Quiroz, Almintor, Tasayco-Jala, Abel, Peralta-Eugenio8, Gutember
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5627
Enlace del recurso:https://hdl.handle.net/20.500.12867/5627
http://doi.org/10.14569/IJACSA.2021.0121249
Nivel de acceso:acceso abierto
Materia:Machine learning
Teacher performance
Predictive analytics
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
id UTPD_3cfca01e2871580343526c53b16647f9
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5627
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
title Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
spellingShingle Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
Leva Apaza, Antenor
Machine learning
Teacher performance
Predictive analytics
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
title_full Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
title_fullStr Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
title_full_unstemmed Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
title_sort Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance
author Leva Apaza, Antenor
author_facet Leva Apaza, Antenor
Chamorro-Atalaya, Omar
Anton-De los Santos, Marco
Anton-De los Santos, Juan
Chávez-Herrera, Carlos
Torres-Quiroz, Almintor
Tasayco-Jala, Abel
Peralta-Eugenio8, Gutember
author_role author
author2 Chamorro-Atalaya, Omar
Anton-De los Santos, Marco
Anton-De los Santos, Juan
Chávez-Herrera, Carlos
Torres-Quiroz, Almintor
Tasayco-Jala, Abel
Peralta-Eugenio8, Gutember
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Leva Apaza, Antenor
Chamorro-Atalaya, Omar
Anton-De los Santos, Marco
Anton-De los Santos, Juan
Chávez-Herrera, Carlos
Torres-Quiroz, Almintor
Tasayco-Jala, Abel
Peralta-Eugenio8, Gutember
dc.subject.es_PE.fl_str_mv Machine learning
Teacher performance
Predictive analytics
topic Machine learning
Teacher performance
Predictive analytics
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
description The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2021a software, identified an Accuracy of 81.3%, for the Ensemble Bagged Trees algorithm. When performing the validation of the collected data, and proceeding with the obtaining of the predictive model, for the 4 classes (satisfaction levels), total precision values of 82.21%, Sensitivity of 73.40%, Specificity of 91.02% and of 90.63% Accuracy. In turn, the highest level of the area under the curve (AUC) by means of the Receiver operating characteristic (ROC) is 0.93, thus considering a sensitivity of the predictive model of 93%. The validation of these results will allow the directors of the higher institution to have a database, to be used in the process of improving the quality of the educational service in relation to teaching performance.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-15T15:26:39Z
dc.date.available.none.fl_str_mv 2022-07-15T15:26:39Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2156-5570
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5627
dc.identifier.journal.es_PE.fl_str_mv International Journal of Advanced Computer Science and Applications
dc.identifier.doi.none.fl_str_mv http://doi.org/10.14569/IJACSA.2021.0121249
identifier_str_mv 2156-5570
International Journal of Advanced Computer Science and Applications
url https://hdl.handle.net/20.500.12867/5627
http://doi.org/10.14569/IJACSA.2021.0121249
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv International Journal of Advanced Computer Science and Applications;vol. 12, n° 12, 367 - 373
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Science and Information Organization
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/1/A.Leva_IJACSA_Articulo_eng_2021.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/3/A.Leva_IJACSA_Articulo_eng_2021.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/4/A.Leva_IJACSA_Articulo_eng_2021.pdf.jpg
bitstream.checksum.fl_str_mv b8016d6aa42d0f21bdf36bb4c27af590
8a4605be74aa9ea9d79846c1fba20a33
257cfedc28a1a129dd60fd4f9f47e5ff
625dbc9c3f93301561843e6cbbc1c234
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984918161981440
spelling Leva Apaza, AntenorChamorro-Atalaya, OmarAnton-De los Santos, MarcoAnton-De los Santos, JuanChávez-Herrera, CarlosTorres-Quiroz, AlmintorTasayco-Jala, AbelPeralta-Eugenio8, Gutember2022-07-15T15:26:39Z2022-07-15T15:26:39Z20222156-5570https://hdl.handle.net/20.500.12867/5627International Journal of Advanced Computer Science and Applicationshttp://doi.org/10.14569/IJACSA.2021.0121249The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2021a software, identified an Accuracy of 81.3%, for the Ensemble Bagged Trees algorithm. When performing the validation of the collected data, and proceeding with the obtaining of the predictive model, for the 4 classes (satisfaction levels), total precision values of 82.21%, Sensitivity of 73.40%, Specificity of 91.02% and of 90.63% Accuracy. In turn, the highest level of the area under the curve (AUC) by means of the Receiver operating characteristic (ROC) is 0.93, thus considering a sensitivity of the predictive model of 93%. The validation of these results will allow the directors of the higher institution to have a database, to be used in the process of improving the quality of the educational service in relation to teaching performance.Campus Lima Norteapplication/pdfengScience and Information OrganizationGBInternational Journal of Advanced Computer Science and Applications;vol. 12, n° 12, 367 - 373info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningTeacher performancePredictive analyticshttps://purl.org/pe-repo/ocde/ford#5.03.01https://purl.org/pe-repo/ocde/ford#2.02.03Machine learning model through ensemble bagged trees in predictive analysis of university teaching performanceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALA.Leva_IJACSA_Articulo_eng_2021.pdfA.Leva_IJACSA_Articulo_eng_2021.pdfapplication/pdf270169http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/1/A.Leva_IJACSA_Articulo_eng_2021.pdfb8016d6aa42d0f21bdf36bb4c27af590MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA.Leva_IJACSA_Articulo_eng_2021.pdf.txtA.Leva_IJACSA_Articulo_eng_2021.pdf.txtExtracted texttext/plain30584http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/3/A.Leva_IJACSA_Articulo_eng_2021.pdf.txt257cfedc28a1a129dd60fd4f9f47e5ffMD53THUMBNAILA.Leva_IJACSA_Articulo_eng_2021.pdf.jpgA.Leva_IJACSA_Articulo_eng_2021.pdf.jpgGenerated Thumbnailimage/jpeg24163http://repositorio.utp.edu.pe/bitstream/20.500.12867/5627/4/A.Leva_IJACSA_Articulo_eng_2021.pdf.jpg625dbc9c3f93301561843e6cbbc1c234MD5420.500.12867/5627oai:repositorio.utp.edu.pe:20.500.12867/56272022-07-15 11:03:48.837Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).