Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning

Descripción del Articulo

The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, pr...

Descripción completa

Detalles Bibliográficos
Autores: Suclle Surco, Davis Alessandro, Assereto Huamani, Andres Antonio, Herrera-Trujillo, Emilio Antonio
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676092
Enlace del recurso:http://hdl.handle.net/10757/676092
Nivel de acceso:acceso embargado
Materia:Horticultural Products
Machine Learning
Price Prediction
Recommendation System
Sale Risk
Descripción
Sumario:The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, primarily due to the challenges associated with adjusting selling prices. To address this issue, our proposal is based on implementing the XGBoost algorithm, which has the capability to handle heterogeneous data and variables of different types. This algorithm leverages historical data to provide accurate and up-to-date price recommendations for horticultural products. This, in turn, enables micro-entrepreneurs to make informed decisions when setting prices, thereby achieving expected benefits and enhancing their competitiveness. The integration of our project with microenterprises in Lima has the potential to mitigate the risk of economic losses by offering greater accuracy in predicting future market prices. Through the development of our project, we have achieved a high level of accuracy in forecasting future prices, reaching a minimum of 90% when compared to actual prices.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).