Price Prediction of Agricultural Products: Machine Learning

Descripción del Articulo

Family farming is essentially characterized by the use of family labor force, due to the lack of land, water, and capital resources. An important tool is which allows them to know which products will be the best priced when production is completed, and at this point machine learning technology has,...

Descripción completa

Detalles Bibliográficos
Autores: Cerna, Rino, Tirado, Eduardo, Bayona-Oré, Sussy
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1634
Enlace del recurso:https://hdl.handle.net/20.500.13067/1634
https://doi.org/10.1007/978-981-16-2102-4_78
Nivel de acceso:acceso restringido
Materia:Machine learning
Price prediction
Agriculture
Farming
Family farm
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Family farming is essentially characterized by the use of family labor force, due to the lack of land, water, and capital resources. An important tool is which allows them to know which products will be the best priced when production is completed, and at this point machine learning technology has, in particular, models and algorithms that allow for price prediction. The aim of this work is to review the literature related to price prediction of agricultural products using machine learning technology with the purpose of identifying the prediction models used in the studies. It also aims to identify the agricultural products used in these predictions to discuss their application in other products. The results show that neural network model is the most used in the selected studies.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).