Price Prediction of Agricultural Products: Machine Learning
Descripción del Articulo
Family farming is essentially characterized by the use of family labor force, due to the lack of land, water, and capital resources. An important tool is which allows them to know which products will be the best priced when production is completed, and at this point machine learning technology has,...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1634 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1634 https://doi.org/10.1007/978-981-16-2102-4_78 |
Nivel de acceso: | acceso restringido |
Materia: | Machine learning Price prediction Agriculture Farming Family farm https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | Family farming is essentially characterized by the use of family labor force, due to the lack of land, water, and capital resources. An important tool is which allows them to know which products will be the best priced when production is completed, and at this point machine learning technology has, in particular, models and algorithms that allow for price prediction. The aim of this work is to review the literature related to price prediction of agricultural products using machine learning technology with the purpose of identifying the prediction models used in the studies. It also aims to identify the agricultural products used in these predictions to discuss their application in other products. The results show that neural network model is the most used in the selected studies. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).