Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
Descripción del Articulo
The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, pr...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676092 |
Enlace del recurso: | http://hdl.handle.net/10757/676092 |
Nivel de acceso: | acceso embargado |
Materia: | Horticultural Products Machine Learning Price Prediction Recommendation System Sale Risk |
id |
UUPC_cdd5290f051ff6cb33e847a1fe1e1383 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676092 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning |
title |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning |
spellingShingle |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning Suclle Surco, Davis Alessandro Horticultural Products Machine Learning Price Prediction Recommendation System Sale Risk |
title_short |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning |
title_full |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning |
title_fullStr |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning |
title_full_unstemmed |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning |
title_sort |
Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning |
author |
Suclle Surco, Davis Alessandro |
author_facet |
Suclle Surco, Davis Alessandro Assereto Huamani, Andres Antonio Herrera-Trujillo, Emilio Antonio |
author_role |
author |
author2 |
Assereto Huamani, Andres Antonio Herrera-Trujillo, Emilio Antonio |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Suclle Surco, Davis Alessandro Assereto Huamani, Andres Antonio Herrera-Trujillo, Emilio Antonio |
dc.subject.es_PE.fl_str_mv |
Horticultural Products Machine Learning Price Prediction Recommendation System Sale Risk |
topic |
Horticultural Products Machine Learning Price Prediction Recommendation System Sale Risk |
description |
The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, primarily due to the challenges associated with adjusting selling prices. To address this issue, our proposal is based on implementing the XGBoost algorithm, which has the capability to handle heterogeneous data and variables of different types. This algorithm leverages historical data to provide accurate and up-to-date price recommendations for horticultural products. This, in turn, enables micro-entrepreneurs to make informed decisions when setting prices, thereby achieving expected benefits and enhancing their competitiveness. The integration of our project with microenterprises in Lima has the potential to mitigate the risk of economic losses by offering greater accuracy in predicting future market prices. Through the development of our project, we have achieved a high level of accuracy in forecasting future prices, reaching a minimum of 90% when compared to actual prices. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-11T12:27:13Z |
dc.date.available.none.fl_str_mv |
2024-10-11T12:27:13Z |
dc.date.issued.fl_str_mv |
2024-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
18650929 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-58956-0_18 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676092 |
dc.identifier.eissn.none.fl_str_mv |
18650937 |
dc.identifier.journal.es_PE.fl_str_mv |
Communications in Computer and Information Science |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85195879517 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85195879517 |
identifier_str_mv |
18650929 10.1007/978-3-031-58956-0_18 18650937 Communications in Computer and Information Science 2-s2.0-85195879517 SCOPUS_ID:85195879517 |
url |
http://hdl.handle.net/10757/676092 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Communications in Computer and Information Science |
dc.source.volume.none.fl_str_mv |
2049 CCIS |
dc.source.beginpage.none.fl_str_mv |
231 |
dc.source.endpage.none.fl_str_mv |
246 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676092/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187183021129728 |
spelling |
381318c6c3bee71a116446158b869bca500de896e9cf58395473cebd22f3fa39948300efcefc216e013170f402a87594b398aeSuclle Surco, Davis AlessandroAssereto Huamani, Andres AntonioHerrera-Trujillo, Emilio Antonio2024-10-11T12:27:13Z2024-10-11T12:27:13Z2024-01-011865092910.1007/978-3-031-58956-0_18http://hdl.handle.net/10757/67609218650937Communications in Computer and Information Science2-s2.0-85195879517SCOPUS_ID:85195879517The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, primarily due to the challenges associated with adjusting selling prices. To address this issue, our proposal is based on implementing the XGBoost algorithm, which has the capability to handle heterogeneous data and variables of different types. This algorithm leverages historical data to provide accurate and up-to-date price recommendations for horticultural products. This, in turn, enables micro-entrepreneurs to make informed decisions when setting prices, thereby achieving expected benefits and enhancing their competitiveness. The integration of our project with microenterprises in Lima has the potential to mitigate the risk of economic losses by offering greater accuracy in predicting future market prices. Through the development of our project, we have achieved a high level of accuracy in forecasting future prices, reaching a minimum of 90% when compared to actual prices.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessHorticultural ProductsMachine LearningPrice PredictionRecommendation SystemSale RiskPredictive Model for Accurate Horticultural Product Pricing Using Machine Learninginfo:eu-repo/semantics/articleCommunications in Computer and Information Science2049 CCIS231246reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676092/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676092oai:repositorioacademico.upc.edu.pe:10757/6760922024-10-11 12:27:14.95Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).