Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning

Descripción del Articulo

The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, pr...

Descripción completa

Detalles Bibliográficos
Autores: Suclle Surco, Davis Alessandro, Assereto Huamani, Andres Antonio, Herrera-Trujillo, Emilio Antonio
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676092
Enlace del recurso:http://hdl.handle.net/10757/676092
Nivel de acceso:acceso embargado
Materia:Horticultural Products
Machine Learning
Price Prediction
Recommendation System
Sale Risk
id UUPC_cdd5290f051ff6cb33e847a1fe1e1383
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676092
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
title Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
spellingShingle Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
Suclle Surco, Davis Alessandro
Horticultural Products
Machine Learning
Price Prediction
Recommendation System
Sale Risk
title_short Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
title_full Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
title_fullStr Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
title_full_unstemmed Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
title_sort Predictive Model for Accurate Horticultural Product Pricing Using Machine Learning
author Suclle Surco, Davis Alessandro
author_facet Suclle Surco, Davis Alessandro
Assereto Huamani, Andres Antonio
Herrera-Trujillo, Emilio Antonio
author_role author
author2 Assereto Huamani, Andres Antonio
Herrera-Trujillo, Emilio Antonio
author2_role author
author
dc.contributor.author.fl_str_mv Suclle Surco, Davis Alessandro
Assereto Huamani, Andres Antonio
Herrera-Trujillo, Emilio Antonio
dc.subject.es_PE.fl_str_mv Horticultural Products
Machine Learning
Price Prediction
Recommendation System
Sale Risk
topic Horticultural Products
Machine Learning
Price Prediction
Recommendation System
Sale Risk
description The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, primarily due to the challenges associated with adjusting selling prices. To address this issue, our proposal is based on implementing the XGBoost algorithm, which has the capability to handle heterogeneous data and variables of different types. This algorithm leverages historical data to provide accurate and up-to-date price recommendations for horticultural products. This, in turn, enables micro-entrepreneurs to make informed decisions when setting prices, thereby achieving expected benefits and enhancing their competitiveness. The integration of our project with microenterprises in Lima has the potential to mitigate the risk of economic losses by offering greater accuracy in predicting future market prices. Through the development of our project, we have achieved a high level of accuracy in forecasting future prices, reaching a minimum of 90% when compared to actual prices.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-11T12:27:13Z
dc.date.available.none.fl_str_mv 2024-10-11T12:27:13Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-58956-0_18
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676092
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85195879517
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85195879517
identifier_str_mv 18650929
10.1007/978-3-031-58956-0_18
18650937
Communications in Computer and Information Science
2-s2.0-85195879517
SCOPUS_ID:85195879517
url http://hdl.handle.net/10757/676092
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 2049 CCIS
dc.source.beginpage.none.fl_str_mv 231
dc.source.endpage.none.fl_str_mv 246
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676092/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187183021129728
spelling 381318c6c3bee71a116446158b869bca500de896e9cf58395473cebd22f3fa39948300efcefc216e013170f402a87594b398aeSuclle Surco, Davis AlessandroAssereto Huamani, Andres AntonioHerrera-Trujillo, Emilio Antonio2024-10-11T12:27:13Z2024-10-11T12:27:13Z2024-01-011865092910.1007/978-3-031-58956-0_18http://hdl.handle.net/10757/67609218650937Communications in Computer and Information Science2-s2.0-85195879517SCOPUS_ID:85195879517The trade of horticultural products is a crucial sector in the local economy of Lima, Peru. Microenterprises dedicated to this activity face various challenges, including demand volatility. This volatility can decrease the likelihood of generating profits and impact the stability of the business, primarily due to the challenges associated with adjusting selling prices. To address this issue, our proposal is based on implementing the XGBoost algorithm, which has the capability to handle heterogeneous data and variables of different types. This algorithm leverages historical data to provide accurate and up-to-date price recommendations for horticultural products. This, in turn, enables micro-entrepreneurs to make informed decisions when setting prices, thereby achieving expected benefits and enhancing their competitiveness. The integration of our project with microenterprises in Lima has the potential to mitigate the risk of economic losses by offering greater accuracy in predicting future market prices. Through the development of our project, we have achieved a high level of accuracy in forecasting future prices, reaching a minimum of 90% when compared to actual prices.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessHorticultural ProductsMachine LearningPrice PredictionRecommendation SystemSale RiskPredictive Model for Accurate Horticultural Product Pricing Using Machine Learninginfo:eu-repo/semantics/articleCommunications in Computer and Information Science2049 CCIS231246reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676092/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676092oai:repositorioacademico.upc.edu.pe:10757/6760922024-10-11 12:27:14.95Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).