Machine learning model through ensemble bagged trees in predictive analysis of university teaching performance

Descripción del Articulo

The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2...

Descripción completa

Detalles Bibliográficos
Autores: Leva Apaza, Antenor, Chamorro-Atalaya, Omar, Anton-De los Santos, Marco, Anton-De los Santos, Juan, Chávez-Herrera, Carlos, Torres-Quiroz, Almintor, Tasayco-Jala, Abel, Peralta-Eugenio8, Gutember
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5627
Enlace del recurso:https://hdl.handle.net/20.500.12867/5627
http://doi.org/10.14569/IJACSA.2021.0121249
Nivel de acceso:acceso abierto
Materia:Machine learning
Teacher performance
Predictive analytics
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:The objective of this study is to analyze and discuss the metrics of the Machine Learning model through the Ensemble Bagged Trees algorithm, which will be applied to data on satisfaction with teaching performance in the virtual environment. Initially the classification analysis through the Matlab R2021a software, identified an Accuracy of 81.3%, for the Ensemble Bagged Trees algorithm. When performing the validation of the collected data, and proceeding with the obtaining of the predictive model, for the 4 classes (satisfaction levels), total precision values of 82.21%, Sensitivity of 73.40%, Specificity of 91.02% and of 90.63% Accuracy. In turn, the highest level of the area under the curve (AUC) by means of the Receiver operating characteristic (ROC) is 0.93, thus considering a sensitivity of the predictive model of 93%. The validation of these results will allow the directors of the higher institution to have a database, to be used in the process of improving the quality of the educational service in relation to teaching performance.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).