Quadratic vector support machine algorithm, applied to prediction of university student satisfaction

Descripción del Articulo

This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the c...

Descripción completa

Detalles Bibliográficos
Autores: León Velarde, César Gerardo, Chamorro-Atalaya, Omar, Morales-Romero, Guillermo, Meza-Chaupis, Yeferzon, Auqui-Ramos, Elizabeth, Ramos-Cruz, Jesús, Aybar-Bellido, Irma
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5880
Enlace del recurso:https://hdl.handle.net/20.500.12867/5880
http://doi.org/10.11591/ijeecs.v27.i1.pp139-148
Nivel de acceso:acceso abierto
Materia:Predictive analytics
Student satisfaction
University students
https://purl.org/pe-repo/ocde/ford#2.02.03
https://purl.org/pe-repo/ocde/ford#5.03.01
Descripción
Sumario:This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the classification learner technique to determine the supervised learning algorithm. The experimental results determine a Cronbach's Alpha reliability of 0.979, in terms of the classification algorithm, it is validated that the quadratic vector support machine (SVM) has better performance metrics, being correct in 97.8% (accuracy) in the predictions of satisfaction of university students, with a recall (sensitivity) of 96.5% and an F1 score of 0.968. Likewise, when evaluating the classification model by means of the receiver operating characteristic curve (ROC) technique, it is identified that for the three expected classes of satisfaction the value of the area under the curve (AUC) is equal to 1, in such sense the predictive model through the SVM Quadratic algorithm, has a high capacity to distinguish between the 3 classes; i) dissatisfied, ii) satisfied and iii) very satisfied of satisfaction of university students.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).