Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
Descripción del Articulo
This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the c...
| Autores: | , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5880 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/5880 http://doi.org/10.11591/ijeecs.v27.i1.pp139-148 |
| Nivel de acceso: | acceso abierto |
| Materia: | Predictive analytics Student satisfaction University students https://purl.org/pe-repo/ocde/ford#2.02.03 https://purl.org/pe-repo/ocde/ford#5.03.01 |
| id |
UTPD_843f5c654292123ef35b0395215e4853 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5880 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction |
| title |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction |
| spellingShingle |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction León Velarde, César Gerardo Predictive analytics Student satisfaction University students https://purl.org/pe-repo/ocde/ford#2.02.03 https://purl.org/pe-repo/ocde/ford#5.03.01 |
| title_short |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction |
| title_full |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction |
| title_fullStr |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction |
| title_full_unstemmed |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction |
| title_sort |
Quadratic vector support machine algorithm, applied to prediction of university student satisfaction |
| author |
León Velarde, César Gerardo |
| author_facet |
León Velarde, César Gerardo Chamorro-Atalaya, Omar Morales-Romero, Guillermo Meza-Chaupis, Yeferzon Auqui-Ramos, Elizabeth Ramos-Cruz, Jesús Aybar-Bellido, Irma |
| author_role |
author |
| author2 |
Chamorro-Atalaya, Omar Morales-Romero, Guillermo Meza-Chaupis, Yeferzon Auqui-Ramos, Elizabeth Ramos-Cruz, Jesús Aybar-Bellido, Irma |
| author2_role |
author author author author author author |
| dc.contributor.author.fl_str_mv |
León Velarde, César Gerardo Chamorro-Atalaya, Omar Morales-Romero, Guillermo Meza-Chaupis, Yeferzon Auqui-Ramos, Elizabeth Ramos-Cruz, Jesús Aybar-Bellido, Irma |
| dc.subject.es_PE.fl_str_mv |
Predictive analytics Student satisfaction University students |
| topic |
Predictive analytics Student satisfaction University students https://purl.org/pe-repo/ocde/ford#2.02.03 https://purl.org/pe-repo/ocde/ford#5.03.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 https://purl.org/pe-repo/ocde/ford#5.03.01 |
| description |
This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the classification learner technique to determine the supervised learning algorithm. The experimental results determine a Cronbach's Alpha reliability of 0.979, in terms of the classification algorithm, it is validated that the quadratic vector support machine (SVM) has better performance metrics, being correct in 97.8% (accuracy) in the predictions of satisfaction of university students, with a recall (sensitivity) of 96.5% and an F1 score of 0.968. Likewise, when evaluating the classification model by means of the receiver operating characteristic curve (ROC) technique, it is identified that for the three expected classes of satisfaction the value of the area under the curve (AUC) is equal to 1, in such sense the predictive model through the SVM Quadratic algorithm, has a high capacity to distinguish between the 3 classes; i) dissatisfied, ii) satisfied and iii) very satisfied of satisfaction of university students. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-08-10T23:58:05Z |
| dc.date.available.none.fl_str_mv |
2022-08-10T23:58:05Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2502-4760 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5880 |
| dc.identifier.journal.es_PE.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.11591/ijeecs.v27.i1.pp139-148 |
| identifier_str_mv |
2502-4760 Indonesian Journal of Electrical Engineering and Computer Science |
| url |
https://hdl.handle.net/20.500.12867/5880 http://doi.org/10.11591/ijeecs.v27.i1.pp139-148 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science;vol. 27, n° 1, pp. 139 - 148 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.publisher.country.es_PE.fl_str_mv |
ID |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/1/C.Leon_Articulo_IJEECS_eng_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/3/C.Leon_Articulo_IJEECS_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/4/C.Leon_Articulo_IJEECS_eng_2022.pdf.jpg |
| bitstream.checksum.fl_str_mv |
f6dedc5c83f9b6493c2e28e596131400 8a4605be74aa9ea9d79846c1fba20a33 2195bf1eb2941a00f8afd7be711e9eaf 8b12abc6cdbadd7722ae2cc8af7c9468 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984901119475712 |
| spelling |
León Velarde, César GerardoChamorro-Atalaya, OmarMorales-Romero, GuillermoMeza-Chaupis, YeferzonAuqui-Ramos, ElizabethRamos-Cruz, JesúsAybar-Bellido, Irma2022-08-10T23:58:05Z2022-08-10T23:58:05Z20222502-4760https://hdl.handle.net/20.500.12867/5880Indonesian Journal of Electrical Engineering and Computer Sciencehttp://doi.org/10.11591/ijeecs.v27.i1.pp139-148This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the classification learner technique to determine the supervised learning algorithm. The experimental results determine a Cronbach's Alpha reliability of 0.979, in terms of the classification algorithm, it is validated that the quadratic vector support machine (SVM) has better performance metrics, being correct in 97.8% (accuracy) in the predictions of satisfaction of university students, with a recall (sensitivity) of 96.5% and an F1 score of 0.968. Likewise, when evaluating the classification model by means of the receiver operating characteristic curve (ROC) technique, it is identified that for the three expected classes of satisfaction the value of the area under the curve (AUC) is equal to 1, in such sense the predictive model through the SVM Quadratic algorithm, has a high capacity to distinguish between the 3 classes; i) dissatisfied, ii) satisfied and iii) very satisfied of satisfaction of university students.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 27, n° 1, pp. 139 - 148info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPredictive analyticsStudent satisfactionUniversity studentshttps://purl.org/pe-repo/ocde/ford#2.02.03https://purl.org/pe-repo/ocde/ford#5.03.01Quadratic vector support machine algorithm, applied to prediction of university student satisfactioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Leon_Articulo_IJEECS_eng_2022.pdfC.Leon_Articulo_IJEECS_eng_2022.pdfapplication/pdf549003http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/1/C.Leon_Articulo_IJEECS_eng_2022.pdff6dedc5c83f9b6493c2e28e596131400MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTC.Leon_Articulo_IJEECS_eng_2022.pdf.txtC.Leon_Articulo_IJEECS_eng_2022.pdf.txtExtracted texttext/plain40012http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/3/C.Leon_Articulo_IJEECS_eng_2022.pdf.txt2195bf1eb2941a00f8afd7be711e9eafMD53THUMBNAILC.Leon_Articulo_IJEECS_eng_2022.pdf.jpgC.Leon_Articulo_IJEECS_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg21063http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/4/C.Leon_Articulo_IJEECS_eng_2022.pdf.jpg8b12abc6cdbadd7722ae2cc8af7c9468MD5420.500.12867/5880oai:repositorio.utp.edu.pe:20.500.12867/58802022-08-10 20:03:16.451Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).