Quadratic vector support machine algorithm, applied to prediction of university student satisfaction

Descripción del Articulo

This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the c...

Descripción completa

Detalles Bibliográficos
Autores: León Velarde, César Gerardo, Chamorro-Atalaya, Omar, Morales-Romero, Guillermo, Meza-Chaupis, Yeferzon, Auqui-Ramos, Elizabeth, Ramos-Cruz, Jesús, Aybar-Bellido, Irma
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5880
Enlace del recurso:https://hdl.handle.net/20.500.12867/5880
http://doi.org/10.11591/ijeecs.v27.i1.pp139-148
Nivel de acceso:acceso abierto
Materia:Predictive analytics
Student satisfaction
University students
https://purl.org/pe-repo/ocde/ford#2.02.03
https://purl.org/pe-repo/ocde/ford#5.03.01
id UTPD_843f5c654292123ef35b0395215e4853
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5880
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
title Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
spellingShingle Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
León Velarde, César Gerardo
Predictive analytics
Student satisfaction
University students
https://purl.org/pe-repo/ocde/ford#2.02.03
https://purl.org/pe-repo/ocde/ford#5.03.01
title_short Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
title_full Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
title_fullStr Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
title_full_unstemmed Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
title_sort Quadratic vector support machine algorithm, applied to prediction of university student satisfaction
author León Velarde, César Gerardo
author_facet León Velarde, César Gerardo
Chamorro-Atalaya, Omar
Morales-Romero, Guillermo
Meza-Chaupis, Yeferzon
Auqui-Ramos, Elizabeth
Ramos-Cruz, Jesús
Aybar-Bellido, Irma
author_role author
author2 Chamorro-Atalaya, Omar
Morales-Romero, Guillermo
Meza-Chaupis, Yeferzon
Auqui-Ramos, Elizabeth
Ramos-Cruz, Jesús
Aybar-Bellido, Irma
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv León Velarde, César Gerardo
Chamorro-Atalaya, Omar
Morales-Romero, Guillermo
Meza-Chaupis, Yeferzon
Auqui-Ramos, Elizabeth
Ramos-Cruz, Jesús
Aybar-Bellido, Irma
dc.subject.es_PE.fl_str_mv Predictive analytics
Student satisfaction
University students
topic Predictive analytics
Student satisfaction
University students
https://purl.org/pe-repo/ocde/ford#2.02.03
https://purl.org/pe-repo/ocde/ford#5.03.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
https://purl.org/pe-repo/ocde/ford#5.03.01
description This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the classification learner technique to determine the supervised learning algorithm. The experimental results determine a Cronbach's Alpha reliability of 0.979, in terms of the classification algorithm, it is validated that the quadratic vector support machine (SVM) has better performance metrics, being correct in 97.8% (accuracy) in the predictions of satisfaction of university students, with a recall (sensitivity) of 96.5% and an F1 score of 0.968. Likewise, when evaluating the classification model by means of the receiver operating characteristic curve (ROC) technique, it is identified that for the three expected classes of satisfaction the value of the area under the curve (AUC) is equal to 1, in such sense the predictive model through the SVM Quadratic algorithm, has a high capacity to distinguish between the 3 classes; i) dissatisfied, ii) satisfied and iii) very satisfied of satisfaction of university students.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-10T23:58:05Z
dc.date.available.none.fl_str_mv 2022-08-10T23:58:05Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2502-4760
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5880
dc.identifier.journal.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.identifier.doi.none.fl_str_mv http://doi.org/10.11591/ijeecs.v27.i1.pp139-148
identifier_str_mv 2502-4760
Indonesian Journal of Electrical Engineering and Computer Science
url https://hdl.handle.net/20.500.12867/5880
http://doi.org/10.11591/ijeecs.v27.i1.pp139-148
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science;vol. 27, n° 1, pp. 139 - 148
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_PE.fl_str_mv ID
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/1/C.Leon_Articulo_IJEECS_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/3/C.Leon_Articulo_IJEECS_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/4/C.Leon_Articulo_IJEECS_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv f6dedc5c83f9b6493c2e28e596131400
8a4605be74aa9ea9d79846c1fba20a33
2195bf1eb2941a00f8afd7be711e9eaf
8b12abc6cdbadd7722ae2cc8af7c9468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984901119475712
spelling León Velarde, César GerardoChamorro-Atalaya, OmarMorales-Romero, GuillermoMeza-Chaupis, YeferzonAuqui-Ramos, ElizabethRamos-Cruz, JesúsAybar-Bellido, Irma2022-08-10T23:58:05Z2022-08-10T23:58:05Z20222502-4760https://hdl.handle.net/20.500.12867/5880Indonesian Journal of Electrical Engineering and Computer Sciencehttp://doi.org/10.11591/ijeecs.v27.i1.pp139-148This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS-25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the classification learner technique to determine the supervised learning algorithm. The experimental results determine a Cronbach's Alpha reliability of 0.979, in terms of the classification algorithm, it is validated that the quadratic vector support machine (SVM) has better performance metrics, being correct in 97.8% (accuracy) in the predictions of satisfaction of university students, with a recall (sensitivity) of 96.5% and an F1 score of 0.968. Likewise, when evaluating the classification model by means of the receiver operating characteristic curve (ROC) technique, it is identified that for the three expected classes of satisfaction the value of the area under the curve (AUC) is equal to 1, in such sense the predictive model through the SVM Quadratic algorithm, has a high capacity to distinguish between the 3 classes; i) dissatisfied, ii) satisfied and iii) very satisfied of satisfaction of university students.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 27, n° 1, pp. 139 - 148info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPredictive analyticsStudent satisfactionUniversity studentshttps://purl.org/pe-repo/ocde/ford#2.02.03https://purl.org/pe-repo/ocde/ford#5.03.01Quadratic vector support machine algorithm, applied to prediction of university student satisfactioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Leon_Articulo_IJEECS_eng_2022.pdfC.Leon_Articulo_IJEECS_eng_2022.pdfapplication/pdf549003http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/1/C.Leon_Articulo_IJEECS_eng_2022.pdff6dedc5c83f9b6493c2e28e596131400MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTC.Leon_Articulo_IJEECS_eng_2022.pdf.txtC.Leon_Articulo_IJEECS_eng_2022.pdf.txtExtracted texttext/plain40012http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/3/C.Leon_Articulo_IJEECS_eng_2022.pdf.txt2195bf1eb2941a00f8afd7be711e9eafMD53THUMBNAILC.Leon_Articulo_IJEECS_eng_2022.pdf.jpgC.Leon_Articulo_IJEECS_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg21063http://repositorio.utp.edu.pe/bitstream/20.500.12867/5880/4/C.Leon_Articulo_IJEECS_eng_2022.pdf.jpg8b12abc6cdbadd7722ae2cc8af7c9468MD5420.500.12867/5880oai:repositorio.utp.edu.pe:20.500.12867/58802022-08-10 20:03:16.451Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).