Assessment of ECMWF SEAS5 seasonal forecast performance over South America
Descripción del Articulo
Seasonal predictions have a great socioeconomic potential if they are reliable and skillful. In this study, we assess the prediction performance of SEAS5, version 5 of the seasonal prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF), over South America against homogen...
| Autores: | , , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
| Repositorio: | SENAMHI-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/424 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12542/424 https://doi.org/10.1175/WAF-D-19-0106.1 |
| Nivel de acceso: | acceso abierto |
| Materia: | Climatología Precipitación Pronóstico South America https://purl.org/pe-repo/ocde/ford#1.05.09 precipitacion - Clima y Eventos Naturales |
| id |
SEAM_ee8f031d7fec4cf265939bbf78a4ae9d |
|---|---|
| oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/424 |
| network_acronym_str |
SEAM |
| network_name_str |
SENAMHI-Institucional |
| repository_id_str |
4818 |
| dc.title.en_US.fl_str_mv |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America |
| title |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America |
| spellingShingle |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America Gubler, S. Climatología Precipitación Pronóstico South America https://purl.org/pe-repo/ocde/ford#1.05.09 precipitacion - Clima y Eventos Naturales |
| title_short |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America |
| title_full |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America |
| title_fullStr |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America |
| title_full_unstemmed |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America |
| title_sort |
Assessment of ECMWF SEAS5 seasonal forecast performance over South America |
| author |
Gubler, S. |
| author_facet |
Gubler, S. Sedlmeier, K. Bhend, J. Avalos, Grinia Coelho, C.A.S. Escajadillo Fernandez, Yury Jacques-Coper, M. Martinez, R. Schwierz, C. De Skansi, M. Spirig, C. |
| author_role |
author |
| author2 |
Sedlmeier, K. Bhend, J. Avalos, Grinia Coelho, C.A.S. Escajadillo Fernandez, Yury Jacques-Coper, M. Martinez, R. Schwierz, C. De Skansi, M. Spirig, C. |
| author2_role |
author author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Gubler, S. Sedlmeier, K. Bhend, J. Avalos, Grinia Coelho, C.A.S. Escajadillo Fernandez, Yury Jacques-Coper, M. Martinez, R. Schwierz, C. De Skansi, M. Spirig, C. |
| dc.subject.es_PE.fl_str_mv |
Climatología Precipitación Pronóstico |
| topic |
Climatología Precipitación Pronóstico South America https://purl.org/pe-repo/ocde/ford#1.05.09 precipitacion - Clima y Eventos Naturales |
| dc.subject.en_US.fl_str_mv |
South America |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.09 |
| dc.subject.sinia.es_PE.fl_str_mv |
precipitacion - Clima y Eventos Naturales |
| description |
Seasonal predictions have a great socioeconomic potential if they are reliable and skillful. In this study, we assess the prediction performance of SEAS5, version 5 of the seasonal prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF), over South America against homogenized station data. For temperature, we find the highest prediction performances in the tropics during austral summer, where the probability that the predictions correctly discriminate different observed outcomes is 70%. In regions lying to the east of the Andes, the predictions of maximum and minimum temperature still exhibit considerable performance, while farther to the south in Chile and Argentina the temperature prediction performance is low. Generally, the prediction performance of minimum temperature is slightly lower than for maximum temperature. The prediction performance of precipitation is generally lower and spatially and temporally more variable than for temperature. The highest prediction performance is observed at the coast and over the highlands of Colombia and Ecuador, over the northeastern part of Brazil, and over an isolated region to the north of Uruguay during DJF. In general, Niño-3.4 has a strong influence on both air temperature and precipitation in the regions where ECMWF SEAS5 shows high performance, in some regions through teleconnections (e.g., to the north of Uruguay). However, we show that SEAS5 outperforms a simple empirical prediction based on Niño-3.4 in most regions where the prediction performance of the dynamical model is high, thereby supporting the potential benefit of using a dynamical model instead of statistical relationships for predictions at the seasonal scale |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2020-07-28T01:51:56Z |
| dc.date.available.none.fl_str_mv |
2020-07-28T01:51:56Z |
| dc.date.issued.fl_str_mv |
2020-03-11 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.sinia.es_PE.fl_str_mv |
text/publicacion cientifica |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| format |
article |
| status_str |
acceptedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/424 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 0746 0446 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1175/WAF-D-19-0106.1 |
| dc.identifier.journal.es_PE.fl_str_mv |
Weather and Forecasting |
| dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/424 https://hdl.handle.net/20.500.12542/424 |
| url |
https://hdl.handle.net/20.500.12542/424 https://doi.org/10.1175/WAF-D-19-0106.1 |
| identifier_str_mv |
0000 0001 0746 0446 Weather and Forecasting |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:1520-0434 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND) |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
American Meteorological Society |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
| dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
| instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
| instacron_str |
SENAMHI |
| institution |
SENAMHI |
| reponame_str |
SENAMHI-Institucional |
| collection |
SENAMHI-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/1/Assessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/2/license_rdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/3/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/4/Assessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/5/Assessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.jpg |
| bitstream.checksum.fl_str_mv |
bc36153ebcfcf397f129373b67fdb289 9868ccc48a14c8d591352b6eaf7f6239 8a4605be74aa9ea9d79846c1fba20a33 f9c67f0fbf1e6fa88a7f0dc21354f2dc bb306fc701933435484aaa838072935a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
| repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
| _version_ |
1847601860590960640 |
| spelling |
Gubler, S.Sedlmeier, K.Bhend, J.Avalos, GriniaCoelho, C.A.S.Escajadillo Fernandez, YuryJacques-Coper, M.Martinez, R.Schwierz, C.De Skansi, M.Spirig, C.2020-07-28T01:51:56Z2020-07-28T01:51:56Z2020-03-11https://hdl.handle.net/20.500.12542/4240000 0001 0746 0446https://doi.org/10.1175/WAF-D-19-0106.1Weather and Forecastinghttps://hdl.handle.net/20.500.12542/424https://hdl.handle.net/20.500.12542/424Seasonal predictions have a great socioeconomic potential if they are reliable and skillful. In this study, we assess the prediction performance of SEAS5, version 5 of the seasonal prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF), over South America against homogenized station data. For temperature, we find the highest prediction performances in the tropics during austral summer, where the probability that the predictions correctly discriminate different observed outcomes is 70%. In regions lying to the east of the Andes, the predictions of maximum and minimum temperature still exhibit considerable performance, while farther to the south in Chile and Argentina the temperature prediction performance is low. Generally, the prediction performance of minimum temperature is slightly lower than for maximum temperature. The prediction performance of precipitation is generally lower and spatially and temporally more variable than for temperature. The highest prediction performance is observed at the coast and over the highlands of Colombia and Ecuador, over the northeastern part of Brazil, and over an isolated region to the north of Uruguay during DJF. In general, Niño-3.4 has a strong influence on both air temperature and precipitation in the regions where ECMWF SEAS5 shows high performance, in some regions through teleconnections (e.g., to the north of Uruguay). However, we show that SEAS5 outperforms a simple empirical prediction based on Niño-3.4 in most regions where the prediction performance of the dynamical model is high, thereby supporting the potential benefit of using a dynamical model instead of statistical relationships for predictions at the seasonal scalePor paresapplication/pdfengAmerican Meteorological Societyurn:issn:1520-0434info:eu-repo/semantics/openAccessReconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)https://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIClimatologíaPrecipitaciónPronósticoSouth Americahttps://purl.org/pe-repo/ocde/ford#1.05.09precipitacion - Clima y Eventos NaturalesAssessment of ECMWF SEAS5 seasonal forecast performance over South Americainfo:eu-repo/semantics/articletext/publicacion cientificainfo:eu-repo/semantics/acceptedVersionORIGINALAssessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdfAssessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdfTexto Completoapplication/pdf5798203http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/1/Assessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdfbc36153ebcfcf397f129373b67fdb289MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTAssessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.txtAssessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.txtExtracted texttext/plain78168http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/4/Assessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.txtf9c67f0fbf1e6fa88a7f0dc21354f2dcMD54THUMBNAILAssessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.jpgAssessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.jpgGenerated Thumbnailimage/jpeg7315http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/424/5/Assessment-of-ECMWF-SEAS5-seasonal-forecast-performance-over-South-America2020Weather-and-Forecasting_2020.pdf.jpgbb306fc701933435484aaa838072935aMD5520.500.12542/424oai:repositorio.senamhi.gob.pe:20.500.12542/4242025-10-23 17:05:03.811Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.108393 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).