1
artículo
Publicado 2020
Enlace
Enlace
The amount of dust deposited on the surface of a panel depends on the environmental parameters. These are random (eg. humidity, wind speed and ambient temperature) which makes it difficult to model them theoretically. This paper describes the effect of dust by calculating the derating factor (η_polvo) and modeling its dependence over time. To achieve this, an experimental campaign was carried out in three tandem (a-Si / µc-Si) of 1.15 kW controlled in the city of Lima, divided into two periods of time. In the first period, from 07.15.2016 to 04.07.2017, the three strings were cleaned twice per week. The nominal power was calculated for days with clear skies conditions. It was found that between each string there are slight differences or mismatches in the nominal power, which is considered to estimate a correction factor (k) in order to readjust the output power. In the second stage fr...
2
tesis de maestría
Publicado 2016
Enlace
Enlace
The present thesis reviews different models that describe the fundamental absorption of amorphous semiconductors. These models make use of the electronic density of states to shape the absorption coefficient in the fundamental absorption region. The study focuses on the optical absorption of hydrogenated amorphous Silicon (a-Si:H), hydrogenated and non-hydrogenated amorphous silicon carbide (a-SiC:Hx), and silicon nitride (a-SiN) thin films. On the one hand, parameters like the Tauc-gap and Urbach energy are obtained from the absorption coefficient using the traditional models. On the other hand, a recently proposed model based on band thermal fluctuations was assessed [1]. This model allows a determination of the mobility gap and the Urbach energy from a single fit of the absorption coefficient without the need of identifying the Tauc region beforehand. Furthermore, it is able to discri...
3
tesis doctoral
A crucial aspect of evaluating and maintaining a photovoltaic (PV) installation connected to the grid is the availability of models that describe its operation reliably in real operating conditions. The nominal power of the PV generator (P*M) is considered an essential input parameter, and several models have been proposed to estimate P*M for characterizing the PV system. In the case of PV generators in outdoor conditions, the American Society for Testing and Materials, the International Electrotechnical Commission, and others have proposed procedures to determine the P*M of the generator. As part of these procedures, monitoring days with ideal conditions is mandatory, notably days with a clear sky, high irradiance values, and low wind speeds. Such restrictions can limit the number of suitable monitoring days, especially in places where clouds frequently form. This thesis proposes a new ...
4
artículo
Publicado 2020
Enlace
Enlace
The amount of dust deposited on the surface of a panel depends on the environmental parameters. These are random (eg. humidity, wind speed and ambient temperature) which makes it difficult to model them theoretically. This paper describes the effect of dust by calculating the derating factor (η_polvo) and modeling its dependence over time. To achieve this, an experimental campaign was carried out in three tandem (a-Si / µc-Si) of 1.15 kW controlled in the city of Lima, divided into two periods of time. In the first period, from 07.15.2016 to 04.07.2017, the three strings were cleaned twice per week. The nominal power was calculated for days with clear skies conditions. It was found that between each string there are slight differences or mismatches in the nominal power, which is considered to estimate a correction factor (k) in order to readjust the output power. In the second stage fr...
5
tesis de maestría
Publicado 2016
Enlace
Enlace
The present thesis reviews different models that describe the fundamental absorption of amorphous semiconductors. These models make use of the electronic density of states to shape the absorption coefficient in the fundamental absorption region. The study focuses on the optical absorption of hydrogenated amorphous Silicon (a-Si:H), hydrogenated and non-hydrogenated amorphous silicon carbide (a-SiC:Hx), and silicon nitride (a-SiN) thin films. On the one hand, parameters like the Tauc-gap and Urbach energy are obtained from the absorption coefficient using the traditional models. On the other hand, a recently proposed model based on band thermal fluctuations was assessed [1]. This model allows a determination of the mobility gap and the Urbach energy from a single fit of the absorption coefficient without the need of identifying the Tauc region beforehand. Furthermore, it is able to discri...
6
tesis doctoral
A crucial aspect of evaluating and maintaining a photovoltaic (PV) installation connected to the grid is the availability of models that describe its operation reliably in real operating conditions. The nominal power of the PV generator (P*M) is considered an essential input parameter, and several models have been proposed to estimate P*M for characterizing the PV system. In the case of PV generators in outdoor conditions, the American Society for Testing and Materials, the International Electrotechnical Commission, and others have proposed procedures to determine the P*M of the generator. As part of these procedures, monitoring days with ideal conditions is mandatory, notably days with a clear sky, high irradiance values, and low wind speeds. Such restrictions can limit the number of suitable monitoring days, especially in places where clouds frequently form. This thesis proposes a new ...
7
tesis de maestría
Publicado 2016
Enlace
Enlace
The present thesis reviews different models that describe the fundamental absorption of amorphous semiconductors. These models make use of the electronic density of states to shape the absorption coefficient in the fundamental absorption region. The study focuses on the optical absorption of hydrogenated amorphous Silicon (a-Si:H), hydrogenated and non-hydrogenated amorphous silicon carbide (a-SiC:Hx), and silicon nitride (a-SiN) thin films. On the one hand, parameters like the Tauc-gap and Urbach energy are obtained from the absorption coefficient using the traditional models. On the other hand, a recently proposed model based on band thermal fluctuations was assessed [1]. This model allows a determination of the mobility gap and the Urbach energy from a single fit of the absorption coefficient without the need of identifying the Tauc region beforehand. Furthermore, it is able to discri...
8
tesis de grado
Publicado 2016
Enlace
Enlace
En este trabajo se presenta la caracterización de películas delgadas de plata sobre substratos de SiO2/Si, crecidas por deposición física de vapor. El espesor promedio depositado es 100 nm. Los cambios estructurales se estudiaron aplicando diferentes tratamientos térmicos de recocido, a temperaturas comprendidas entre 250 °C y 1100°C. Se estudió las variaciones en la cristalización por la técnica de Difracción de Rayos X (DRX), y la morfología superficial por microscopia óptica microscopia, electrónica de barrido (MEB) y microscopia de fuerza atómica (AFM). Se encontró en las películas cambios en la morfología superficial: estas formaron islas de plata en la superficie del substrato debido a mecanismos de autodifusión. Adicionalmente, la cristalización mejora con el tratamiento térmico en la dirección [111], hasta los 850°C. Sin embargo, esta presenta un cambio en ...
9
artículo
Publicado 2020
Enlace
Enlace
In order to find a module’s real efficiency and predict its power and energy production it is necessary to study its behaviour and characterize it in the conditions in which it is installed. The single diode model for photovoltaic (PV) cells relates a cell’s current to its voltage through five electric parameters which give us fundamental information about a module and the physical processes inside its cells. Currently, there are many analytical, numerical and heuristic methods used to extract the model’s parameters, each one with advantages and disadvantages that depend on the technology of the module and climate conditions. Current analytical methods used to extract parameters from silicon modules were applied to thin film PV modules in order to study their validity. This work presents the results of the parameter extraction by comparing the measured current-voltage (IV) curve wi...
10
artículo
Publicado 2020
Enlace
Enlace
In order to find a module’s real efficiency and predict its power and energy production it is necessary to study its behaviour and characterize it in the conditions in which it is installed. The single diode model for photovoltaic (PV) cells relates a cell’s current to its voltage through five electric parameters which give us fundamental information about a module and the physical processes inside its cells. Currently, there are many analytical, numerical and heuristic methods used to extract the model’s parameters, each one with advantages and disadvantages that depend on the technology of the module and climate conditions. Current analytical methods used to extract parameters from silicon modules were applied to thin film PV modules in order to study their validity. This work presents the results of the parameter extraction by comparing the measured current-voltage (IV) curve wi...
11
artículo
The nominal power of a photovoltaic system is a useful parameter in the determination of the current state of a photovoltaic generator. In the present work, the procedure proposed by Martínez-Moreno was followed, which is based on the Osterwald model. During the application of the procedure, a hysteresis effect was observed to a different extent throughout the experimental campaign. The corrected power versus irradiance values differed during the day, even when the irradiance and temperature of the module were similar. This led to an uncertainty in the inclusion of all the data. Therefore, the addition of a filter of the data is sought in the procedure of the estimation of the nominal power, as a complement to that proposed by Martinez-Moreno in an attempt to clarify the calculation in generators that presents this non-linear behavior.
12
artículo
Publicado 2020
Enlace
Enlace
The nominal power of a photovoltaic system is a useful parameter in the determination of the current state of a photovoltaic generator. In the present work, the procedure proposed by Martínez-Moreno was followed, which is based on the Osterwald model. During the application of the procedure, a hysteresis effect was observed to a different extent throughout the experimental campaign. The corrected power versus irradiance values differed during the day, even when the irradiance and temperature of the module were similar. This led to an uncertainty in the inclusion of all the data. Therefore, the addition of a filter of the data is sought in the procedure of the estimation of the nominal power, as a complement to that proposed by Martinez-Moreno in an attempt to clarify the calculation in generators that presents this non-linear behavior.
13
artículo
Publicado 2020
Enlace
Enlace
This paper presents the design, implementation and first results of a Photovoltaic Research Laboratory developed at the facilities of the Materials Science and Renewable Energy Group (MatER-PUCP) of the Pontifical Catholic University of Peru in collaboration with the IDEA Research Group (Research and Development in Solar Energy) of the University of Jaen (UJA), Spain. This laboratory is one of the first in the country with the appropriate equipment for calibration and certification of different commercial and emerging technologies of photovoltaic modules in the Peruvian market. The results that are expected to be obtained through an extensive experimental campaign, which began in May 2019, may be offered to companies or other public institutions, such as detailed studies of the behavior and degradation of the different technologies of photovoltaic modules depending on the particular clim...
14
artículo
Publicado 2020
Enlace
Enlace
This paper presents the design, implementation and first results of a Photovoltaic Research Laboratory developed at the facilities of the Materials Science and Renewable Energy Group (MatER-PUCP) of the Pontifical Catholic University of Peru in collaboration with the IDEA Research Group (Research and Development in Solar Energy) of the University of Jaen (UJA), Spain. This laboratory is one of the first in the country with the appropriate equipment for calibration and certification of different commercial and emerging technologies of photovoltaic modules in the Peruvian market. The results that are expected to be obtained through an extensive experimental campaign, which began in May 2019, may be offered to companies or other public institutions, such as detailed studies of the behavior and degradation of the different technologies of photovoltaic modules depending on the particular clim...