1
artículo
The nominal power of a photovoltaic system is a useful parameter in the determination of the current state of a photovoltaic generator. In the present work, the procedure proposed by Martínez-Moreno was followed, which is based on the Osterwald model. During the application of the procedure, a hysteresis effect was observed to a different extent throughout the experimental campaign. The corrected power versus irradiance values differed during the day, even when the irradiance and temperature of the module were similar. This led to an uncertainty in the inclusion of all the data. Therefore, the addition of a filter of the data is sought in the procedure of the estimation of the nominal power, as a complement to that proposed by Martinez-Moreno in an attempt to clarify the calculation in generators that presents this non-linear behavior.
2
tesis de grado
Publicado 2022
Enlace
Enlace
This work investigates two main aspects related to photovoltaic: systems and module characterization and performance modeling. The first part aims to characterize a PV generator located in Spain with a nominal power of 109.44 kW under standard test conditions according to the datasheet. An operational photovoltaic system's nominal power is a valid parameter for determining its current operational state. The applicability of a standard procedure to estimate the nominal power of an operating generator, proposed by Martínez-Moreno and based on Osterwald's model, is investigated. However, the standard procedure does not specify how to deal with experimental data when unexpected behavior impedes the nominal power estimation under operating conditions. During the 6-month study, the power-irradiance relation showed a hysteresis effect with varying amplitudes throughout the campaign. Adding a d...
3
tesis de grado
Publicado 2022
Enlace
Enlace
This work investigates two main aspects related to photovoltaic: systems and module characterization and performance modeling. The first part aims to characterize a PV generator located in Spain with a nominal power of 109.44 kW under standard test conditions according to the datasheet. An operational photovoltaic system's nominal power is a valid parameter for determining its current operational state. The applicability of a standard procedure to estimate the nominal power of an operating generator, proposed by Martínez-Moreno and based on Osterwald's model, is investigated. However, the standard procedure does not specify how to deal with experimental data when unexpected behavior impedes the nominal power estimation under operating conditions. During the 6-month study, the power-irradiance relation showed a hysteresis effect with varying amplitudes throughout the campaign. Adding a d...
4
artículo
Publicado 2020
Enlace
Enlace
The nominal power of a photovoltaic system is a useful parameter in the determination of the current state of a photovoltaic generator. In the present work, the procedure proposed by Martínez-Moreno was followed, which is based on the Osterwald model. During the application of the procedure, a hysteresis effect was observed to a different extent throughout the experimental campaign. The corrected power versus irradiance values differed during the day, even when the irradiance and temperature of the module were similar. This led to an uncertainty in the inclusion of all the data. Therefore, the addition of a filter of the data is sought in the procedure of the estimation of the nominal power, as a complement to that proposed by Martinez-Moreno in an attempt to clarify the calculation in generators that presents this non-linear behavior.
5
artículo
Publicado 2020
Enlace
Enlace
The amount of dust deposited on the surface of a panel depends on the environmental parameters. These are random (eg. humidity, wind speed and ambient temperature) which makes it difficult to model them theoretically. This paper describes the effect of dust by calculating the derating factor (η_polvo) and modeling its dependence over time. To achieve this, an experimental campaign was carried out in three tandem (a-Si / µc-Si) of 1.15 kW controlled in the city of Lima, divided into two periods of time. In the first period, from 07.15.2016 to 04.07.2017, the three strings were cleaned twice per week. The nominal power was calculated for days with clear skies conditions. It was found that between each string there are slight differences or mismatches in the nominal power, which is considered to estimate a correction factor (k) in order to readjust the output power. In the second stage fr...
6
artículo
Publicado 2020
Enlace
Enlace
The amount of dust deposited on the surface of a panel depends on the environmental parameters. These are random (eg. humidity, wind speed and ambient temperature) which makes it difficult to model them theoretically. This paper describes the effect of dust by calculating the derating factor (η_polvo) and modeling its dependence over time. To achieve this, an experimental campaign was carried out in three tandem (a-Si / µc-Si) of 1.15 kW controlled in the city of Lima, divided into two periods of time. In the first period, from 07.15.2016 to 04.07.2017, the three strings were cleaned twice per week. The nominal power was calculated for days with clear skies conditions. It was found that between each string there are slight differences or mismatches in the nominal power, which is considered to estimate a correction factor (k) in order to readjust the output power. In the second stage fr...
7
artículo
Publicado 2020
Enlace
Enlace
This paper presents the design, implementation and first results of a Photovoltaic Research Laboratory developed at the facilities of the Materials Science and Renewable Energy Group (MatER-PUCP) of the Pontifical Catholic University of Peru in collaboration with the IDEA Research Group (Research and Development in Solar Energy) of the University of Jaen (UJA), Spain. This laboratory is one of the first in the country with the appropriate equipment for calibration and certification of different commercial and emerging technologies of photovoltaic modules in the Peruvian market. The results that are expected to be obtained through an extensive experimental campaign, which began in May 2019, may be offered to companies or other public institutions, such as detailed studies of the behavior and degradation of the different technologies of photovoltaic modules depending on the particular clim...
8
artículo
Publicado 2020
Enlace
Enlace
This paper presents the design, implementation and first results of a Photovoltaic Research Laboratory developed at the facilities of the Materials Science and Renewable Energy Group (MatER-PUCP) of the Pontifical Catholic University of Peru in collaboration with the IDEA Research Group (Research and Development in Solar Energy) of the University of Jaen (UJA), Spain. This laboratory is one of the first in the country with the appropriate equipment for calibration and certification of different commercial and emerging technologies of photovoltaic modules in the Peruvian market. The results that are expected to be obtained through an extensive experimental campaign, which began in May 2019, may be offered to companies or other public institutions, such as detailed studies of the behavior and degradation of the different technologies of photovoltaic modules depending on the particular clim...