Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
Descripción del Articulo
“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in chil...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Privada Norbert Wiener |
Repositorio: | UWIENER-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/7688 |
Enlace del recurso: | https://hdl.handle.net/20.500.13053/7688 |
Nivel de acceso: | acceso abierto |
Materia: | "Neural networks; transfer learning; pneumonia; detection; Convolutional" http://purl.org/pe-repo/ocde/ford#3.03.00 |
id |
UWIE_c92e89b0f4f2680f49731e7fe8bfd7ac |
---|---|
oai_identifier_str |
oai:repositorio.uwiener.edu.pe:20.500.13053/7688 |
network_acronym_str |
UWIE |
network_name_str |
UWIENER-Institucional |
repository_id_str |
9398 |
dc.title.es_ES.fl_str_mv |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
title |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
spellingShingle |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection Iparraguirre-Villanueva, Orlando "Neural networks; transfer learning; pneumonia; detection; Convolutional" http://purl.org/pe-repo/ocde/ford#3.03.00 |
title_short |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
title_full |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
title_fullStr |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
title_full_unstemmed |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
title_sort |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Roque Paredes, Ofelia Sierra-Liñan, Fernando Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Guevara-Ponce, Victor Roque Paredes, Ofelia Sierra-Liñan, Fernando Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Roque Paredes, Ofelia Sierra-Liñan, Fernando Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
dc.subject.es_ES.fl_str_mv |
"Neural networks; transfer learning; pneumonia; detection; Convolutional" |
topic |
"Neural networks; transfer learning; pneumonia; detection; Convolutional" http://purl.org/pe-repo/ocde/ford#3.03.00 |
dc.subject.ocde.es_ES.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#3.03.00 |
description |
“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy.“ |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-25T15:18:29Z |
dc.date.available.none.fl_str_mv |
2023-01-25T15:18:29Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_ES.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13053/7688 |
dc.identifier.doi.es_ES.fl_str_mv |
10.14569/IJACSA.2022.0130963 |
url |
https://hdl.handle.net/20.500.13053/7688 |
identifier_str_mv |
10.14569/IJACSA.2022.0130963 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Science and Information Organization |
dc.publisher.country.es_ES.fl_str_mv |
GB |
dc.source.none.fl_str_mv |
reponame:UWIENER-Institucional instname:Universidad Privada Norbert Wiener instacron:UWIENER |
instname_str |
Universidad Privada Norbert Wiener |
instacron_str |
UWIENER |
institution |
UWIENER |
reponame_str |
UWIENER-Institucional |
collection |
UWIENER-Institucional |
bitstream.url.fl_str_mv |
https://dspace-uwiener.metabuscador.org/bitstreams/4e257609-2055-4408-bac6-6dc4a702ff44/download https://dspace-uwiener.metabuscador.org/bitstreams/1beb0310-fc4a-4326-bf62-ceaa526d1847/download https://dspace-uwiener.metabuscador.org/bitstreams/a4ce39ed-3088-4a77-80d6-6199a0c9a521/download https://dspace-uwiener.metabuscador.org/bitstreams/adaee304-1e85-4f9b-9aea-1d64e2bc59e0/download |
bitstream.checksum.fl_str_mv |
c0fa5842c87e7aa5441d94ce2a9959f5 8a4605be74aa9ea9d79846c1fba20a33 65dbe6a3e42d62b76f14d3fe115b787f 6603e20fa8a3016c6634285c81aa88c5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Wiener |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1835828774483001344 |
spelling |
Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorRoque Paredes, OfeliaSierra-Liñan, FernandoZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-01-25T15:18:29Z2023-01-25T15:18:29Z2022https://hdl.handle.net/20.500.13053/768810.14569/IJACSA.2022.0130963“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy.“application/pdfengScience and Information OrganizationGBinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"Neural networks; transfer learning; pneumonia; detection; Convolutional"http://purl.org/pe-repo/ocde/ford#3.03.00Convolutional Neural Networks with Transfer Learning for Pneumonia Detectioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINALPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdfPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdfapplication/pdf874652https://dspace-uwiener.metabuscador.org/bitstreams/4e257609-2055-4408-bac6-6dc4a702ff44/downloadc0fa5842c87e7aa5441d94ce2a9959f5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/1beb0310-fc4a-4326-bf62-ceaa526d1847/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.txtPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.txtExtracted texttext/plain36454https://dspace-uwiener.metabuscador.org/bitstreams/a4ce39ed-3088-4a77-80d6-6199a0c9a521/download65dbe6a3e42d62b76f14d3fe115b787fMD53THUMBNAILPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.jpgPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.jpgGenerated Thumbnailimage/jpeg13786https://dspace-uwiener.metabuscador.org/bitstreams/adaee304-1e85-4f9b-9aea-1d64e2bc59e0/download6603e20fa8a3016c6634285c81aa88c5MD5420.500.13053/7688oai:dspace-uwiener.metabuscador.org:20.500.13053/76882024-12-13 11:46:41.305https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).