Convolutional Neural Networks with Transfer Learning for Pneumonia Detection

Descripción del Articulo

“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in chil...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Guevara-Ponce, Victor, Roque Paredes, Ofelia, Sierra-Liñan, Fernando, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Privada Norbert Wiener
Repositorio:UWIENER-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uwiener.edu.pe:20.500.13053/7688
Enlace del recurso:https://hdl.handle.net/20.500.13053/7688
Nivel de acceso:acceso abierto
Materia:"Neural networks; transfer learning; pneumonia; detection; Convolutional"
http://purl.org/pe-repo/ocde/ford#3.03.00
id UWIE_c92e89b0f4f2680f49731e7fe8bfd7ac
oai_identifier_str oai:repositorio.uwiener.edu.pe:20.500.13053/7688
network_acronym_str UWIE
network_name_str UWIENER-Institucional
repository_id_str 9398
dc.title.es_ES.fl_str_mv Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
spellingShingle Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
Iparraguirre-Villanueva, Orlando
"Neural networks; transfer learning; pneumonia; detection; Convolutional"
http://purl.org/pe-repo/ocde/ford#3.03.00
title_short Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_full Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_fullStr Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_full_unstemmed Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_sort Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Roque Paredes, Ofelia
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Guevara-Ponce, Victor
Roque Paredes, Ofelia
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Roque Paredes, Ofelia
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_ES.fl_str_mv "Neural networks; transfer learning; pneumonia; detection; Convolutional"
topic "Neural networks; transfer learning; pneumonia; detection; Convolutional"
http://purl.org/pe-repo/ocde/ford#3.03.00
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#3.03.00
description “Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy.“
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-01-25T15:18:29Z
dc.date.available.none.fl_str_mv 2023-01-25T15:18:29Z
dc.date.issued.fl_str_mv 2022
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13053/7688
dc.identifier.doi.es_ES.fl_str_mv 10.14569/IJACSA.2022.0130963
url https://hdl.handle.net/20.500.13053/7688
identifier_str_mv 10.14569/IJACSA.2022.0130963
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Science and Information Organization
dc.publisher.country.es_ES.fl_str_mv GB
dc.source.none.fl_str_mv reponame:UWIENER-Institucional
instname:Universidad Privada Norbert Wiener
instacron:UWIENER
instname_str Universidad Privada Norbert Wiener
instacron_str UWIENER
institution UWIENER
reponame_str UWIENER-Institucional
collection UWIENER-Institucional
bitstream.url.fl_str_mv https://dspace-uwiener.metabuscador.org/bitstreams/4e257609-2055-4408-bac6-6dc4a702ff44/download
https://dspace-uwiener.metabuscador.org/bitstreams/1beb0310-fc4a-4326-bf62-ceaa526d1847/download
https://dspace-uwiener.metabuscador.org/bitstreams/a4ce39ed-3088-4a77-80d6-6199a0c9a521/download
https://dspace-uwiener.metabuscador.org/bitstreams/adaee304-1e85-4f9b-9aea-1d64e2bc59e0/download
bitstream.checksum.fl_str_mv c0fa5842c87e7aa5441d94ce2a9959f5
8a4605be74aa9ea9d79846c1fba20a33
65dbe6a3e42d62b76f14d3fe115b787f
6603e20fa8a3016c6634285c81aa88c5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Wiener
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1835828774483001344
spelling Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorRoque Paredes, OfeliaSierra-Liñan, FernandoZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-01-25T15:18:29Z2023-01-25T15:18:29Z2022https://hdl.handle.net/20.500.13053/768810.14569/IJACSA.2022.0130963“Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy.“application/pdfengScience and Information OrganizationGBinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"Neural networks; transfer learning; pneumonia; detection; Convolutional"http://purl.org/pe-repo/ocde/ford#3.03.00Convolutional Neural Networks with Transfer Learning for Pneumonia Detectioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINALPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdfPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdfapplication/pdf874652https://dspace-uwiener.metabuscador.org/bitstreams/4e257609-2055-4408-bac6-6dc4a702ff44/downloadc0fa5842c87e7aa5441d94ce2a9959f5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/1beb0310-fc4a-4326-bf62-ceaa526d1847/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.txtPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.txtExtracted texttext/plain36454https://dspace-uwiener.metabuscador.org/bitstreams/a4ce39ed-3088-4a77-80d6-6199a0c9a521/download65dbe6a3e42d62b76f14d3fe115b787fMD53THUMBNAILPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.jpgPaper_63-Convolutional_Neural_Networks_with_Transfer_Learning.pdf.jpgGenerated Thumbnailimage/jpeg13786https://dspace-uwiener.metabuscador.org/bitstreams/adaee304-1e85-4f9b-9aea-1d64e2bc59e0/download6603e20fa8a3016c6634285c81aa88c5MD5420.500.13053/7688oai:dspace-uwiener.metabuscador.org:20.500.13053/76882024-12-13 11:46:41.305https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).