Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks

Descripción del Articulo

ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue...

Descripción completa

Detalles Bibliográficos
Autores: Oblitas, Jimy, Mejia, Jezreel, De la Torre, Miguel, Avila George, Himer, Seguí Gil, Lucía, Mayor López, Luis, Ibarz, Albert, Castro, Wilson
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/26699
Enlace del recurso:https://hdl.handle.net/11537/26699
https://doi.org/10.3390/app11041581
Nivel de acceso:acceso abierto
Materia:Plantas
Procesamiento de imágenes
Análisis de los alimentos
https://purl.org/pe-repo/ocde/ford#2.11.04
Descripción
Sumario:ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques—Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)— when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbitapepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. ThecomparisonshowedthattheclassifiersbasedonCNNproducedabetterfit,obtaining F1–score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).