Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks

Descripción del Articulo

ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue...

Descripción completa

Detalles Bibliográficos
Autores: Oblitas, Jimy, Mejia, Jezreel, De la Torre, Miguel, Avila George, Himer, Seguí Gil, Lucía, Mayor López, Luis, Ibarz, Albert, Castro, Wilson
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/26699
Enlace del recurso:https://hdl.handle.net/11537/26699
https://doi.org/10.3390/app11041581
Nivel de acceso:acceso abierto
Materia:Plantas
Procesamiento de imágenes
Análisis de los alimentos
https://purl.org/pe-repo/ocde/ford#2.11.04
id UUPN_8bd20d936d39de1a11bbce9758ed6761
oai_identifier_str oai:repositorio.upn.edu.pe:11537/26699
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
title Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
spellingShingle Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
Oblitas, Jimy
Plantas
Procesamiento de imágenes
Análisis de los alimentos
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
title_full Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
title_fullStr Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
title_full_unstemmed Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
title_sort Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
author Oblitas, Jimy
author_facet Oblitas, Jimy
Mejia, Jezreel
De la Torre, Miguel
Avila George, Himer
Seguí Gil, Lucía
Mayor López, Luis
Ibarz, Albert
Castro, Wilson
author_role author
author2 Mejia, Jezreel
De la Torre, Miguel
Avila George, Himer
Seguí Gil, Lucía
Mayor López, Luis
Ibarz, Albert
Castro, Wilson
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Oblitas, Jimy
Mejia, Jezreel
De la Torre, Miguel
Avila George, Himer
Seguí Gil, Lucía
Mayor López, Luis
Ibarz, Albert
Castro, Wilson
dc.subject.es_PE.fl_str_mv Plantas
Procesamiento de imágenes
Análisis de los alimentos
topic Plantas
Procesamiento de imágenes
Análisis de los alimentos
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques—Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)— when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbitapepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. ThecomparisonshowedthattheclassifiersbasedonCNNproducedabetterfit,obtaining F1–score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-04T16:08:48Z
dc.date.available.none.fl_str_mv 2021-06-04T16:08:48Z
dc.date.issued.fl_str_mv 2021-02-10
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Oblitas, J. ...[et al]. (2021). Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041581
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/26699
dc.identifier.journal.es_PE.fl_str_mv Applied Sciences (Switzerland)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/app11041581
identifier_str_mv Oblitas, J. ...[et al]. (2021). Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041581
Applied Sciences (Switzerland)
url https://hdl.handle.net/11537/26699
https://doi.org/10.3390/app11041581
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/26699/4/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.txt
https://repositorio.upn.edu.pe/bitstream/11537/26699/5/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.jpg
https://repositorio.upn.edu.pe/bitstream/11537/26699/1/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf
https://repositorio.upn.edu.pe/bitstream/11537/26699/2/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/26699/3/license.txt
bitstream.checksum.fl_str_mv acef0ff1d3f8a128ccbfb20e374ee522
abfed7c641e9b7869e68fb00ef0c1caf
d5f53b5fed8be77ab1e3a9364350fad1
80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944107769036800
spelling Oblitas, JimyMejia, JezreelDe la Torre, MiguelAvila George, HimerSeguí Gil, LucíaMayor López, LuisIbarz, AlbertCastro, Wilson2021-06-04T16:08:48Z2021-06-04T16:08:48Z2021-02-10Oblitas, J. ...[et al]. (2021). Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041581https://hdl.handle.net/11537/26699Applied Sciences (Switzerland)https://doi.org/10.3390/app11041581ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques—Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)— when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbitapepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. ThecomparisonshowedthattheclassifiersbasedonCNNproducedabetterfit,obtaining F1–score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods.Cajamarcaapplication/pdfengMultidisciplinary Digital Publishing InstituteCHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNPlantasProcesamiento de imágenesAnálisis de los alimentoshttps://purl.org/pe-repo/ocde/ford#2.11.04Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networksinfo:eu-repo/semantics/articleTEXTClassification of the microstructural elements of the vegetal tissue .pdf.txtClassification of the microstructural elements of the vegetal tissue .pdf.txtExtracted texttext/plain34082https://repositorio.upn.edu.pe/bitstream/11537/26699/4/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.txtacef0ff1d3f8a128ccbfb20e374ee522MD54THUMBNAILClassification of the microstructural elements of the vegetal tissue .pdf.jpgClassification of the microstructural elements of the vegetal tissue .pdf.jpgGenerated Thumbnailimage/jpeg4631https://repositorio.upn.edu.pe/bitstream/11537/26699/5/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.jpgabfed7c641e9b7869e68fb00ef0c1cafMD55ORIGINALClassification of the microstructural elements of the vegetal tissue .pdfClassification of the microstructural elements of the vegetal tissue .pdfapplication/pdf1121830https://repositorio.upn.edu.pe/bitstream/11537/26699/1/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdfd5f53b5fed8be77ab1e3a9364350fad1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26699/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26699/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5311537/26699oai:repositorio.upn.edu.pe:11537/266992021-06-11 12:34:27.616Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.908437
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).