Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
Descripción del Articulo
ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Privada del Norte |
| Repositorio: | UPN-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.upn.edu.pe:11537/26699 |
| Enlace del recurso: | https://hdl.handle.net/11537/26699 https://doi.org/10.3390/app11041581 |
| Nivel de acceso: | acceso abierto |
| Materia: | Plantas Procesamiento de imágenes Análisis de los alimentos https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
UUPN_8bd20d936d39de1a11bbce9758ed6761 |
|---|---|
| oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/26699 |
| network_acronym_str |
UUPN |
| network_name_str |
UPN-Institucional |
| repository_id_str |
1873 |
| dc.title.es_PE.fl_str_mv |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks |
| title |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks |
| spellingShingle |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks Oblitas, Jimy Plantas Procesamiento de imágenes Análisis de los alimentos https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks |
| title_full |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks |
| title_fullStr |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks |
| title_full_unstemmed |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks |
| title_sort |
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks |
| author |
Oblitas, Jimy |
| author_facet |
Oblitas, Jimy Mejia, Jezreel De la Torre, Miguel Avila George, Himer Seguí Gil, Lucía Mayor López, Luis Ibarz, Albert Castro, Wilson |
| author_role |
author |
| author2 |
Mejia, Jezreel De la Torre, Miguel Avila George, Himer Seguí Gil, Lucía Mayor López, Luis Ibarz, Albert Castro, Wilson |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Oblitas, Jimy Mejia, Jezreel De la Torre, Miguel Avila George, Himer Seguí Gil, Lucía Mayor López, Luis Ibarz, Albert Castro, Wilson |
| dc.subject.es_PE.fl_str_mv |
Plantas Procesamiento de imágenes Análisis de los alimentos |
| topic |
Plantas Procesamiento de imágenes Análisis de los alimentos https://purl.org/pe-repo/ocde/ford#2.11.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques—Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)— when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbitapepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. ThecomparisonshowedthattheclassifiersbasedonCNNproducedabetterfit,obtaining F1–score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-06-04T16:08:48Z |
| dc.date.available.none.fl_str_mv |
2021-06-04T16:08:48Z |
| dc.date.issued.fl_str_mv |
2021-02-10 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Oblitas, J. ...[et al]. (2021). Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041581 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/26699 |
| dc.identifier.journal.es_PE.fl_str_mv |
Applied Sciences (Switzerland) |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/app11041581 |
| identifier_str_mv |
Oblitas, J. ...[et al]. (2021). Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041581 Applied Sciences (Switzerland) |
| url |
https://hdl.handle.net/11537/26699 https://doi.org/10.3390/app11041581 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.publisher.country.es_PE.fl_str_mv |
CH |
| dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
| dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
| instname_str |
Universidad Privada del Norte |
| instacron_str |
UPN |
| institution |
UPN |
| reponame_str |
UPN-Institucional |
| collection |
UPN-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/26699/4/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.txt https://repositorio.upn.edu.pe/bitstream/11537/26699/5/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.jpg https://repositorio.upn.edu.pe/bitstream/11537/26699/1/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf https://repositorio.upn.edu.pe/bitstream/11537/26699/2/license_rdf https://repositorio.upn.edu.pe/bitstream/11537/26699/3/license.txt |
| bitstream.checksum.fl_str_mv |
acef0ff1d3f8a128ccbfb20e374ee522 abfed7c641e9b7869e68fb00ef0c1caf d5f53b5fed8be77ab1e3a9364350fad1 80294ba9ff4c5b4f07812ee200fbc42f 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional UPN |
| repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
| _version_ |
1752944107769036800 |
| spelling |
Oblitas, JimyMejia, JezreelDe la Torre, MiguelAvila George, HimerSeguí Gil, LucíaMayor López, LuisIbarz, AlbertCastro, Wilson2021-06-04T16:08:48Z2021-06-04T16:08:48Z2021-02-10Oblitas, J. ...[et al]. (2021). Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041581https://hdl.handle.net/11537/26699Applied Sciences (Switzerland)https://doi.org/10.3390/app11041581ABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques—Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)— when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbitapepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. ThecomparisonshowedthattheclassifiersbasedonCNNproducedabetterfit,obtaining F1–score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods.Cajamarcaapplication/pdfengMultidisciplinary Digital Publishing InstituteCHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNPlantasProcesamiento de imágenesAnálisis de los alimentoshttps://purl.org/pe-repo/ocde/ford#2.11.04Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networksinfo:eu-repo/semantics/articleTEXTClassification of the microstructural elements of the vegetal tissue .pdf.txtClassification of the microstructural elements of the vegetal tissue .pdf.txtExtracted texttext/plain34082https://repositorio.upn.edu.pe/bitstream/11537/26699/4/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.txtacef0ff1d3f8a128ccbfb20e374ee522MD54THUMBNAILClassification of the microstructural elements of the vegetal tissue .pdf.jpgClassification of the microstructural elements of the vegetal tissue .pdf.jpgGenerated Thumbnailimage/jpeg4631https://repositorio.upn.edu.pe/bitstream/11537/26699/5/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdf.jpgabfed7c641e9b7869e68fb00ef0c1cafMD55ORIGINALClassification of the microstructural elements of the vegetal tissue .pdfClassification of the microstructural elements of the vegetal tissue .pdfapplication/pdf1121830https://repositorio.upn.edu.pe/bitstream/11537/26699/1/Classification%20of%20the%20microstructural%20elements%20of%20the%20vegetal%20tissue%20.pdfd5f53b5fed8be77ab1e3a9364350fad1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26699/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26699/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5311537/26699oai:repositorio.upn.edu.pe:11537/266992021-06-11 12:34:27.616Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.908437 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).