An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
Descripción del Articulo
Correctly executing exercises during training is of vital importance to ensure adequate athletic performance. Sit-ups are among the most frequently performed exercises requiring proper evaluation. This exercise contributes to increasing abdomen strength, having better posture to reduce back problems...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/684685 |
Enlace del recurso: | http://hdl.handle.net/10757/684685 |
Nivel de acceso: | acceso abierto |
Materia: | abdominal exercise biomechanical monitoring electromyographic (EMG) sensors force measurement image processing |
id |
UUPC_ee8c2140f853fd4b17c227c2910b8d9c |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/684685 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance |
title |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance |
spellingShingle |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance Jurado, Marco abdominal exercise biomechanical monitoring electromyographic (EMG) sensors force measurement image processing |
title_short |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance |
title_full |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance |
title_fullStr |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance |
title_full_unstemmed |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance |
title_sort |
An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance |
author |
Jurado, Marco |
author_facet |
Jurado, Marco Palma, Branco Figueroa, Andres Kemper, Guillermo |
author_role |
author |
author2 |
Palma, Branco Figueroa, Andres Kemper, Guillermo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Jurado, Marco Palma, Branco Figueroa, Andres Kemper, Guillermo |
dc.subject.es_PE.fl_str_mv |
abdominal exercise biomechanical monitoring electromyographic (EMG) sensors force measurement image processing |
topic |
abdominal exercise biomechanical monitoring electromyographic (EMG) sensors force measurement image processing |
description |
Correctly executing exercises during training is of vital importance to ensure adequate athletic performance. Sit-ups are among the most frequently performed exercises requiring proper evaluation. This exercise contributes to increasing abdomen strength, having better posture to reduce back problems, and improving overall physical condition and appearance, among other benefits. Existing methods for evaluating the correct execution of sit-ups are manual, subjective, and inefficient in terms of time, cost, and precision. Therefore, there is a need to have technological tools that measure and monitor core abdominal strength while simultaneously verifying, through image processing, the correct execution of the exercise. Since no solutions with these capabilities have been found in the literature, this work proposes a system that performs these functions using electromyographic (EMG) sensors, force signal processing, and biomechanical monitoring based on image processing and the BlazePose algorithm. The results obtained show a very satisfactory performance of the biomechanical monitoring method, where an accuracy of over 95% is obtained in the identification of the correct body posture, while for the estimation of abdominal strength, a sensitivity of over 90% is achieved during the execution of sit-ups. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-04-30T03:49:23Z |
dc.date.available.none.fl_str_mv |
2025-04-30T03:49:23Z |
dc.date.issued.fl_str_mv |
2025-03-10 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.3991/ijoe.v21i03.52305 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/684685 |
dc.identifier.eissn.none.fl_str_mv |
26268493 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Online and Biomedical Engineering |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-105000209023 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:105000209023 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.3991/ijoe.v21i03.52305 26268493 International Journal of Online and Biomedical Engineering 2-s2.0-105000209023 SCOPUS_ID:105000209023 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/684685 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
International Federation of Engineering Education Societies (IFEES) |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
International Journal of Online and Biomedical Engineering |
dc.source.volume.none.fl_str_mv |
21 |
dc.source.issue.none.fl_str_mv |
3 |
dc.source.beginpage.none.fl_str_mv |
116 |
dc.source.endpage.none.fl_str_mv |
141 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/5/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/4/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/1/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf |
bitstream.checksum.fl_str_mv |
b956b6a3dacbc5f5ebd3480afbee5dbf 081b78a5cf96b517eac12c14b770d559 8a4605be74aa9ea9d79846c1fba20a33 0175ea4a2d4caec4bbcc37e300941108 6199534b8c981bc25b716f866b85e7ac |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187435507744768 |
spelling |
780c6150568b3883abac5e1d17938d16d7b832c2a13cb358c360cdbb06ed6818300ce5c03b9774236fea8eea528660189d081a224b2a512525985a4d85a3aa8658f500Jurado, MarcoPalma, BrancoFigueroa, AndresKemper, Guillermo2025-04-30T03:49:23Z2025-04-30T03:49:23Z2025-03-1010.3991/ijoe.v21i03.52305http://hdl.handle.net/10757/68468526268493International Journal of Online and Biomedical Engineering2-s2.0-105000209023SCOPUS_ID:1050002090230000 0001 2196 144XCorrectly executing exercises during training is of vital importance to ensure adequate athletic performance. Sit-ups are among the most frequently performed exercises requiring proper evaluation. This exercise contributes to increasing abdomen strength, having better posture to reduce back problems, and improving overall physical condition and appearance, among other benefits. Existing methods for evaluating the correct execution of sit-ups are manual, subjective, and inefficient in terms of time, cost, and precision. Therefore, there is a need to have technological tools that measure and monitor core abdominal strength while simultaneously verifying, through image processing, the correct execution of the exercise. Since no solutions with these capabilities have been found in the literature, this work proposes a system that performs these functions using electromyographic (EMG) sensors, force signal processing, and biomechanical monitoring based on image processing and the BlazePose algorithm. The results obtained show a very satisfactory performance of the biomechanical monitoring method, where an accuracy of over 95% is obtained in the identification of the correct body posture, while for the estimation of abdominal strength, a sensitivity of over 90% is achieved during the execution of sit-ups.ODS 3: Salud y bienestarODS 4: Educación de calidadODS 5: Igualdad de géneroapplication/pdfengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/abdominal exercisebiomechanical monitoringelectromyographic (EMG) sensorsforce measurementimage processingAn IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performanceinfo:eu-repo/semantics/articleInternational Journal of Online and Biomedical Engineering213116141reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2025-04-30T03:49:29ZTHUMBNAIL116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.jpg116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.jpgGenerated Thumbnailimage/jpeg108348https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/5/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.jpgb956b6a3dacbc5f5ebd3480afbee5dbfMD55falseTEXT116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.txt116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.txtExtracted texttext/plain58149https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/4/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.txt081b78a5cf96b517eac12c14b770d559MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52falseORIGINAL116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdfapplication/pdf3659278https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/1/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf6199534b8c981bc25b716f866b85e7acMD51true10757/684685oai:repositorioacademico.upc.edu.pe:10757/6846852025-06-26 12:54:04.116Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.960013 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).