An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance

Descripción del Articulo

Correctly executing exercises during training is of vital importance to ensure adequate athletic performance. Sit-ups are among the most frequently performed exercises requiring proper evaluation. This exercise contributes to increasing abdomen strength, having better posture to reduce back problems...

Descripción completa

Detalles Bibliográficos
Autores: Jurado, Marco, Palma, Branco, Figueroa, Andres, Kemper, Guillermo
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/684685
Enlace del recurso:http://hdl.handle.net/10757/684685
Nivel de acceso:acceso abierto
Materia:abdominal exercise
biomechanical monitoring
electromyographic (EMG) sensors
force measurement
image processing
id UUPC_ee8c2140f853fd4b17c227c2910b8d9c
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/684685
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
title An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
spellingShingle An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
Jurado, Marco
abdominal exercise
biomechanical monitoring
electromyographic (EMG) sensors
force measurement
image processing
title_short An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
title_full An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
title_fullStr An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
title_full_unstemmed An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
title_sort An IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performance
author Jurado, Marco
author_facet Jurado, Marco
Palma, Branco
Figueroa, Andres
Kemper, Guillermo
author_role author
author2 Palma, Branco
Figueroa, Andres
Kemper, Guillermo
author2_role author
author
author
dc.contributor.author.fl_str_mv Jurado, Marco
Palma, Branco
Figueroa, Andres
Kemper, Guillermo
dc.subject.es_PE.fl_str_mv abdominal exercise
biomechanical monitoring
electromyographic (EMG) sensors
force measurement
image processing
topic abdominal exercise
biomechanical monitoring
electromyographic (EMG) sensors
force measurement
image processing
description Correctly executing exercises during training is of vital importance to ensure adequate athletic performance. Sit-ups are among the most frequently performed exercises requiring proper evaluation. This exercise contributes to increasing abdomen strength, having better posture to reduce back problems, and improving overall physical condition and appearance, among other benefits. Existing methods for evaluating the correct execution of sit-ups are manual, subjective, and inefficient in terms of time, cost, and precision. Therefore, there is a need to have technological tools that measure and monitor core abdominal strength while simultaneously verifying, through image processing, the correct execution of the exercise. Since no solutions with these capabilities have been found in the literature, this work proposes a system that performs these functions using electromyographic (EMG) sensors, force signal processing, and biomechanical monitoring based on image processing and the BlazePose algorithm. The results obtained show a very satisfactory performance of the biomechanical monitoring method, where an accuracy of over 95% is obtained in the identification of the correct body posture, while for the estimation of abdominal strength, a sensitivity of over 90% is achieved during the execution of sit-ups.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-04-30T03:49:23Z
dc.date.available.none.fl_str_mv 2025-04-30T03:49:23Z
dc.date.issued.fl_str_mv 2025-03-10
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3991/ijoe.v21i03.52305
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/684685
dc.identifier.eissn.none.fl_str_mv 26268493
dc.identifier.journal.es_PE.fl_str_mv International Journal of Online and Biomedical Engineering
dc.identifier.eid.none.fl_str_mv 2-s2.0-105000209023
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:105000209023
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.3991/ijoe.v21i03.52305
26268493
International Journal of Online and Biomedical Engineering
2-s2.0-105000209023
SCOPUS_ID:105000209023
0000 0001 2196 144X
url http://hdl.handle.net/10757/684685
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Federation of Engineering Education Societies (IFEES)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv International Journal of Online and Biomedical Engineering
dc.source.volume.none.fl_str_mv 21
dc.source.issue.none.fl_str_mv 3
dc.source.beginpage.none.fl_str_mv 116
dc.source.endpage.none.fl_str_mv 141
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/5/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/4/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/1/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf
bitstream.checksum.fl_str_mv b956b6a3dacbc5f5ebd3480afbee5dbf
081b78a5cf96b517eac12c14b770d559
8a4605be74aa9ea9d79846c1fba20a33
0175ea4a2d4caec4bbcc37e300941108
6199534b8c981bc25b716f866b85e7ac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187435507744768
spelling 780c6150568b3883abac5e1d17938d16d7b832c2a13cb358c360cdbb06ed6818300ce5c03b9774236fea8eea528660189d081a224b2a512525985a4d85a3aa8658f500Jurado, MarcoPalma, BrancoFigueroa, AndresKemper, Guillermo2025-04-30T03:49:23Z2025-04-30T03:49:23Z2025-03-1010.3991/ijoe.v21i03.52305http://hdl.handle.net/10757/68468526268493International Journal of Online and Biomedical Engineering2-s2.0-105000209023SCOPUS_ID:1050002090230000 0001 2196 144XCorrectly executing exercises during training is of vital importance to ensure adequate athletic performance. Sit-ups are among the most frequently performed exercises requiring proper evaluation. This exercise contributes to increasing abdomen strength, having better posture to reduce back problems, and improving overall physical condition and appearance, among other benefits. Existing methods for evaluating the correct execution of sit-ups are manual, subjective, and inefficient in terms of time, cost, and precision. Therefore, there is a need to have technological tools that measure and monitor core abdominal strength while simultaneously verifying, through image processing, the correct execution of the exercise. Since no solutions with these capabilities have been found in the literature, this work proposes a system that performs these functions using electromyographic (EMG) sensors, force signal processing, and biomechanical monitoring based on image processing and the BlazePose algorithm. The results obtained show a very satisfactory performance of the biomechanical monitoring method, where an accuracy of over 95% is obtained in the identification of the correct body posture, while for the estimation of abdominal strength, a sensitivity of over 90% is achieved during the execution of sit-ups.ODS 3: Salud y bienestarODS 4: Educación de calidadODS 5: Igualdad de géneroapplication/pdfengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/abdominal exercisebiomechanical monitoringelectromyographic (EMG) sensorsforce measurementimage processingAn IoT Monitoring System Based on Artificial Intelligence Image Recognition and EMG Signal Processing for Abdominal Exercise Performanceinfo:eu-repo/semantics/articleInternational Journal of Online and Biomedical Engineering213116141reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2025-04-30T03:49:29ZTHUMBNAIL116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.jpg116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.jpgGenerated Thumbnailimage/jpeg108348https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/5/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.jpgb956b6a3dacbc5f5ebd3480afbee5dbfMD55falseTEXT116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.txt116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf.txtExtracted texttext/plain58149https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/4/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf.txt081b78a5cf96b517eac12c14b770d559MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52falseORIGINAL116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdf116_An+IoT+Monitoring+System+Based+on+Artificial+Intelligence+Image+Recognition+and+EMG+Signal+Processing+for+Abdominal+Exercise+Performance.pdfapplication/pdf3659278https://repositorioacademico.upc.edu.pe/bitstream/10757/684685/1/116_An%2bIoT%2bMonitoring%2bSystem%2bBased%2bon%2bArtificial%2bIntelligence%2bImage%2bRecognition%2band%2bEMG%2bSignal%2bProcessing%2bfor%2bAbdominal%2bExercise%2bPerformance.pdf6199534b8c981bc25b716f866b85e7acMD51true10757/684685oai:repositorioacademico.upc.edu.pe:10757/6846852025-06-26 12:54:04.116Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.960013
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).