Algoritmo de toma de decisiones para la generación de historias en videojuegos usando técnicas de machine learning
Descripción del Articulo
La presente propuesta “Algoritmo de toma de decisiones para la generación de historias en videojuegos usando técnicas de machine learning”, tiene como intención diseñar y desarrollar un videojuego que posea múltiples caminos argumentales sin necesidad de que los desarrolladores tengan que implementa...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660711 |
| Enlace del recurso: | http://hdl.handle.net/10757/660711 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine Learning Q-learning Matriz Q Aprendizaje por refuerzo Videojuego Generación de historias Generación procedural Toma de decisiones Acciones de NPCs Q-Learning Q-Matrix Reinforcement learning Videogame Story generation Procedural generation Decision making NPC actions http://purl.org/pe-repo/ocde/ford#1.00.00 https://purl.org/pe-repo/ocde/ford#1.02.01 |
| Sumario: | La presente propuesta “Algoritmo de toma de decisiones para la generación de historias en videojuegos usando técnicas de machine learning”, tiene como intención diseñar y desarrollar un videojuego que posea múltiples caminos argumentales sin necesidad de que los desarrolladores tengan que implementarlos de forma manual. Automatizar el desarrollo de la historia de un videojuego ayuda a reducir costos y tiempos de desarrollo, ya que disminuye el trabajo del equipo desarrollador, además de que permite desarrollar un videojuego con miles de caminos argumentales diferentes. A pesar de que se ha logrado crear métodos para automatizar la generación de diferentes contenidos de videojuegos como niveles, mapas, personajes, melodías, gráficos, entre otros, aun no existe una forma comercialmente viable para generar historias de videojuegos. Nosotros planteamos una solución que podría usarse comercialmente. Para lograr esto, descomponemos las acciones posibles en acciones atómicas, y dotamos a cada personaje no jugable (NPC) un modelo de machine learning, para que sea capaz de tomar sus propias decisiones en el mundo del juego, para que cada uno decida como actuar de forma procedural. Si los NPC se comportan de forma diferente, entonces los sucesos ocurrirán de forma distinta. Para armar el modelo de machine learning con el que los NPCs tomaran decisiones hacemos uso de Q-Learning, un algoritmo perteneciente al paradigma de reinforcement learning. A diferencia de otros algoritmos, este es model-free, lo que significa que no requiere de un modelo del entorno para funcionar. Tampoco requiere que se le brinde de un dataset con anterioridad, solo necesita un conjunto de agentes (los NPCs), que estos puedan ejecutar acciones, y que reciban un feedback de su desempeño. Debido a todo esto, este algoritmo se adapta muy bien a nuestro caso. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).