Performing Deep Recurrent Double Q-Learning for Atari Games

Descripción del Articulo

Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himsel...

Descripción completa

Detalles Bibliográficos
Autor: Moreno-Vera F.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2687
Enlace del recurso:https://hdl.handle.net/20.500.12390/2687
https://doi.org/10.1109/LA-CCI47412.2019.9036763
Nivel de acceso:acceso abierto
Materia:Reinforcement Learning
Atari Games
DDQN
Deep Reinforcement Learning
Double Q-Learning
DQN
DRQN
Recurrent Q-Learning
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, we proposed deep recurrent double Q-learning that is an improvement of the algorithms Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).