Performing Deep Recurrent Double Q-Learning for Atari Games

Descripción del Articulo

Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himsel...

Descripción completa

Detalles Bibliográficos
Autor: Moreno-Vera F.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2687
Enlace del recurso:https://hdl.handle.net/20.500.12390/2687
https://doi.org/10.1109/LA-CCI47412.2019.9036763
Nivel de acceso:acceso abierto
Materia:Reinforcement Learning
Atari Games
DDQN
Deep Reinforcement Learning
Double Q-Learning
DQN
DRQN
Recurrent Q-Learning
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_af5ca9128d6de28e462dd28489150d24
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2687
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp07138600Moreno-Vera F.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2687https://doi.org/10.1109/LA-CCI47412.2019.90367632-s2.0-85083110897Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, we proposed deep recurrent double Q-learning that is an improvement of the algorithms Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Reinforcement LearningAtari Games-1DDQN-1Deep Reinforcement Learning-1Double Q-Learning-1DQN-1DRQN-1Recurrent Q-Learning-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Performing Deep Recurrent Double Q-Learning for Atari Gamesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2687oai:repositorio.concytec.gob.pe:20.500.12390/26872024-05-30 15:42:29.913http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="68bfe09e-1d60-4b09-b826-a8c0258140ac"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Performing Deep Recurrent Double Q-Learning for Atari Games</Title> <PublishedIn> <Publication> <Title>2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/LA-CCI47412.2019.9036763</DOI> <SCP-Number>2-s2.0-85083110897</SCP-Number> <Authors> <Author> <DisplayName>Moreno-Vera F.</DisplayName> <Person id="rp07138" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Reinforcement Learning</Keyword> <Keyword>Atari Games</Keyword> <Keyword>DDQN</Keyword> <Keyword>Deep Reinforcement Learning</Keyword> <Keyword>Double Q-Learning</Keyword> <Keyword>DQN</Keyword> <Keyword>DRQN</Keyword> <Keyword>Recurrent Q-Learning</Keyword> <Abstract>Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, we proposed deep recurrent double Q-learning that is an improvement of the algorithms Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Performing Deep Recurrent Double Q-Learning for Atari Games
title Performing Deep Recurrent Double Q-Learning for Atari Games
spellingShingle Performing Deep Recurrent Double Q-Learning for Atari Games
Moreno-Vera F.
Reinforcement Learning
Atari Games
DDQN
Deep Reinforcement Learning
Double Q-Learning
DQN
DRQN
Recurrent Q-Learning
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Performing Deep Recurrent Double Q-Learning for Atari Games
title_full Performing Deep Recurrent Double Q-Learning for Atari Games
title_fullStr Performing Deep Recurrent Double Q-Learning for Atari Games
title_full_unstemmed Performing Deep Recurrent Double Q-Learning for Atari Games
title_sort Performing Deep Recurrent Double Q-Learning for Atari Games
author Moreno-Vera F.
author_facet Moreno-Vera F.
author_role author
dc.contributor.author.fl_str_mv Moreno-Vera F.
dc.subject.none.fl_str_mv Reinforcement Learning
topic Reinforcement Learning
Atari Games
DDQN
Deep Reinforcement Learning
Double Q-Learning
DQN
DRQN
Recurrent Q-Learning
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Atari Games
DDQN
Deep Reinforcement Learning
Double Q-Learning
DQN
DRQN
Recurrent Q-Learning
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, we proposed deep recurrent double Q-learning that is an improvement of the algorithms Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2687
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/LA-CCI47412.2019.9036763
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85083110897
url https://hdl.handle.net/20.500.12390/2687
https://doi.org/10.1109/LA-CCI47412.2019.9036763
identifier_str_mv 2-s2.0-85083110897
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv 2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883116331630592
score 13.425424
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).