Performing Deep Recurrent Double Q-Learning for Atari Games
Descripción del Articulo
Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himsel...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2687 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2687 https://doi.org/10.1109/LA-CCI47412.2019.9036763 |
| Nivel de acceso: | acceso abierto |
| Materia: | Reinforcement Learning Atari Games DDQN Deep Reinforcement Learning Double Q-Learning DQN DRQN Recurrent Q-Learning http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_af5ca9128d6de28e462dd28489150d24 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2687 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp07138600Moreno-Vera F.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2687https://doi.org/10.1109/LA-CCI47412.2019.90367632-s2.0-85083110897Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, we proposed deep recurrent double Q-learning that is an improvement of the algorithms Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Reinforcement LearningAtari Games-1DDQN-1Deep Reinforcement Learning-1Double Q-Learning-1DQN-1DRQN-1Recurrent Q-Learning-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Performing Deep Recurrent Double Q-Learning for Atari Gamesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2687oai:repositorio.concytec.gob.pe:20.500.12390/26872024-05-30 15:42:29.913http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="68bfe09e-1d60-4b09-b826-a8c0258140ac"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Performing Deep Recurrent Double Q-Learning for Atari Games</Title> <PublishedIn> <Publication> <Title>2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/LA-CCI47412.2019.9036763</DOI> <SCP-Number>2-s2.0-85083110897</SCP-Number> <Authors> <Author> <DisplayName>Moreno-Vera F.</DisplayName> <Person id="rp07138" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Reinforcement Learning</Keyword> <Keyword>Atari Games</Keyword> <Keyword>DDQN</Keyword> <Keyword>Deep Reinforcement Learning</Keyword> <Keyword>Double Q-Learning</Keyword> <Keyword>DQN</Keyword> <Keyword>DRQN</Keyword> <Keyword>Recurrent Q-Learning</Keyword> <Abstract>Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, we proposed deep recurrent double Q-learning that is an improvement of the algorithms Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Performing Deep Recurrent Double Q-Learning for Atari Games |
| title |
Performing Deep Recurrent Double Q-Learning for Atari Games |
| spellingShingle |
Performing Deep Recurrent Double Q-Learning for Atari Games Moreno-Vera F. Reinforcement Learning Atari Games DDQN Deep Reinforcement Learning Double Q-Learning DQN DRQN Recurrent Q-Learning http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Performing Deep Recurrent Double Q-Learning for Atari Games |
| title_full |
Performing Deep Recurrent Double Q-Learning for Atari Games |
| title_fullStr |
Performing Deep Recurrent Double Q-Learning for Atari Games |
| title_full_unstemmed |
Performing Deep Recurrent Double Q-Learning for Atari Games |
| title_sort |
Performing Deep Recurrent Double Q-Learning for Atari Games |
| author |
Moreno-Vera F. |
| author_facet |
Moreno-Vera F. |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Moreno-Vera F. |
| dc.subject.none.fl_str_mv |
Reinforcement Learning |
| topic |
Reinforcement Learning Atari Games DDQN Deep Reinforcement Learning Double Q-Learning DQN DRQN Recurrent Q-Learning http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
Atari Games DDQN Deep Reinforcement Learning Double Q-Learning DQN DRQN Recurrent Q-Learning |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Currently, many applications in Machine Learning are based on defining new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, we proposed deep recurrent double Q-learning that is an improvement of the algorithms Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN. |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2019 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2687 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/LA-CCI47412.2019.9036763 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85083110897 |
| url |
https://hdl.handle.net/20.500.12390/2687 https://doi.org/10.1109/LA-CCI47412.2019.9036763 |
| identifier_str_mv |
2-s2.0-85083110897 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883116331630592 |
| score |
13.425424 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).