Metodología para la estimación de índices de capacidad en procesos para datos no normales

Descripción del Articulo

La globalización ha ido intensificando la competencia en muchos mercados. Con el fin de mantener su competitividad, las empresas buscan satisfacer las necesidades de los clientes mediante el cumplimiento de los requerimientos del mercado. En este contexto, los Índices de Capacidad de Proceso (ICP) j...

Descripción completa

Detalles Bibliográficos
Autores: Chacón Montalván, Erick Albacharro, Romero Romero, Vilma Susana, Quispe Ortiz, Luisa E., Camero Jiménez, José William
Formato: artículo
Fecha de Publicación:2014
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/12779
Enlace del recurso:http://hdl.handle.net/20.500.14076/12779
https://doi.org/10.21754/tecnia.v24i1.32
Nivel de acceso:acceso abierto
Materia:Ajuste de distribuciones de frecuencia
Índice de capacidad del proceso
Transformación de datos
Descripción
Sumario:La globalización ha ido intensificando la competencia en muchos mercados. Con el fin de mantener su competitividad, las empresas buscan satisfacer las necesidades de los clientes mediante el cumplimiento de los requerimientos del mercado. En este contexto, los Índices de Capacidad de Proceso (ICP) juegan un rol trascendental en el análisis de capacidad de los procesos. Para el caso de datos no normales existen dos enfoques generales basados en transformaciones (Transformación de Box –Cox y de Johnson) y percentiles (Sistemas de distribuciones de Pearson y de Burr). Sin embargo, estudios anteriores sobre la comparación de tales métodos muestran distintas conclusiones y por ello nace la necesidad de aclarar las diferencias que existen entre estos métodos para poder implementar una correcta estimación de estos índices. En este trabajo, se realiza un estudio de simulación con el objetivo de comparar los métodos mencionados y proponer una metodología adecuada para la estimación del ICP en datos no normales. Además, se concluye que el mejor método a emplear depende del tipo de distribución, el nivel de asimetría de la misma y el valor del ICP.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).