Methodology for estimating capacity indices in processes for non-normal data

Descripción del Articulo

Globalization has intensified competition in many markets. To remain competitive, the companies look for satisfying the needs of customers by meeting market requirements. In this context, Process Capability Indices (PCI) play a crucial role in assessing the quality of processes. In the case of non-n...

Descripción completa

Detalles Bibliográficos
Autores: Chacón Montalvan, Erick A., Romero Romero, Vilma S., Quispe Ortiz, Luisa E., Camero Jiménez, José W.
Formato: artículo
Fecha de Publicación:2014
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/32
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/32
Nivel de acceso:acceso abierto
Materia:Ajuste de distribuciones de frecuencia
Índice de capacidad del proceso
normalidad
Transformación de datos
Simulación
Approximation to frequency distributions
Process capability indices
Normality
data transformations
Simulation
Descripción
Sumario:Globalization has intensified competition in many markets. To remain competitive, the companies look for satisfying the needs of customers by meeting market requirements. In this context, Process Capability Indices (PCI) play a crucial role in assessing the quality of processes. In the case of non-normal data there are two general approaches based on transformations (Box-Cox and Johnson Transformation) and Percentiles (Pearson’s and Burr’s Distribution Systems). However, previous studies on the comparison of these methods show different conclusions, and thus arises the need to clarify the differences between these methods to implement a proper estimation of these indices. In this paper, a simulation study is made in order to compare the above methods and to propose an appropriate methodology for estimating the PCI in non-normal data. Furthermore, it is concluded that the best method used depends on the type of distribution, the asymmetry level of the distribution and the ICP value. 
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).