Determination of the Compressive Strength of Concrete Using Artificial Neural Network

Descripción del Articulo

The objective of the work is to estimate the compressive strength of concrete by means of the application of Artificial Neural Networks (ANNs). A database is created with design variables of mixtures of 175, 210, and 280 kgf/cm², which are collected from certified laboratories of soil mechanics and...

Descripción completa

Detalles Bibliográficos
Autor: Quiñones Huatangari, Lenin
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Jaén
Repositorio:UNJ-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unj.edu.pe:UNJ/643
Enlace del recurso:http://repositorio.unj.edu.pe/handle/UNJ/643
https://doi.org/10.46604/ijeti.2021.7479
Nivel de acceso:acceso abierto
Materia:Concrete, ANN, artificial neural network, compressive strength
https://purl.org/pe-repo/ocde/ford#2.01.00
Descripción
Sumario:The objective of the work is to estimate the compressive strength of concrete by means of the application of Artificial Neural Networks (ANNs). A database is created with design variables of mixtures of 175, 210, and 280 kgf/cm², which are collected from certified laboratories of soil mechanics and concrete of the city of Jaen. In addition, Weka software is used for the selection of the variables and Matlab software is used for the learning, training, and validation stages of ANNs. Five ANNs are proposed to estimate the compressive strength of concrete at 7th, 14th, and 28th day. The results show that the networks obtain the average error of 4.69% and are composed of an input layer with eleven neurons, two hidden layers with nine neurons each, and the compressive strength of concrete as the output. This method is effective and valid for estimating the compressive strength of concrete as a non-destructive alternative for quality control in the construction industry.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).