Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
Descripción del Articulo
The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2012 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revista UNITRU - Scientia Agropecuaria |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/83 |
Enlace del recurso: | http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial Neural Networks (ANN) effective diffusivity yacon osmotic dehydration. Red Neuronal Artificial (RNA) difusividad efectiva yacón deshidratación osmótica. |
Sumario: | The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95). |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).