High performance concrete, prediction of its resistance to compression through artificial neuronal networks

Descripción del Articulo

The building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the ba...

Descripción completa

Detalles Bibliográficos
Autores: Acuña P., Luis, Espinoza H., Pedro C., Moromi N., Isabel, Torre C., Ana V., García F., Francisco
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/125
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/125
Nivel de acceso:acceso abierto
Materia:Red Neuronal Artificial
probeta
compresión axial
aditivos
Artificial Neural Network
test tube
axial compression
additives
Descripción
Sumario:The building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the basic components such as water, Cement, fine and coarse aggregates, contain other cementing additives, such as microsílices. The problem is to get a technological resource that helps predict the resistance of CAR from its manufacturing data, but this is impossible. However, we have artificial neural networks that fulfill this role, which after being transformed into true mathematical functions that approximate the expected values ??of the resistance of concrete specimens. The approximation level is estimated by the correlation between the response and the expected value of the network. It is then very useful to have a neural network that simulates numerically the resistance of the concrete, even before its manufacture. In this investigation, several artificial neural networks have been obtained that predict the resistance to compression of the CAR with correlations that vary between 0.86 and 0.91.  
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).